Optics and Precision Engineering, Volume. 31, Issue 9, 1366(2023)
Road traffic sign recognition algorithm based on improved YOLOv4
[1] KUUTTI S, FALLAH S, KATSAROS K et al. A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications[J]. IEEE Internet of Things Journal, 5, 829-846(2018).
[2] ZHENG Y, WANG J W, LI K Q. Smoothing traffic flow via control of autonomous vehicles[J]. IEEE Internet of Things Journal, 7, 3882-3896(2020).
[3] YANG X H, LIU W F, ZHANG S L et al. Targeted attention attack on deep learning models in road sign recognition[J]. IEEE Internet of Things Journal, 8, 4980-4990(2021).
[4] LI Y J, XU X, XIAO J H et al. Adaptive Square attack: fooling autonomous cars with adversarial traffic signs[J]. IEEE Internet of Things Journal, 8, 6337-6347(2021).
[5] AKATSUKA H, IMAI S. Road signposts recognition system[C](1987).
[6] MALDONADO-BASCON S, LAFUENTE-ARROYO S, GIL-JIMENEZ P et al. Road-sign detection and recognition based on support vector machines[J]. IEEE Transactions on Intelligent Transportation Systems, 8, 264-278(2007).
[7] Kuo W J, Lin C C. Two-stage road sign detection and recognition[C], 1427-1430(2007).
[8] MADANI A, YUSOF R. Traffic sign recognition based on color, shape, and pictogram classification using support vector machines[J]. Neural Computing and Applications, 30, 2807-2817(2018).
[9] LI J, WANG Z F. Real-time traffic sign recognition based on efficient CNNs in the wild[J]. IEEE Transactions on Intelligent Transportation Systems, 20, 975-984(2019).
[10] ZHANG J M, XIE Z P, SUN J et al. A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign detection[J]. IEEE Access, 8, 29742-29754(2020).
[11] ZHANG J M, HUANG M T, JIN X K et al. A real-time Chinese traffic sign detection algorithm based on modified YOLOv2[J]. Algorithms, 10, 127(2017).
[12] SHAN H X, ZHU W X. A small traffic sign detection algorithm based on modified SSD[J]. IOP Conference Series: Materials Science and Engineering, 646(2019).
[13] LIN T Y, DOLLÁR P, GIRSHICK R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[14] YUAN Y, XIONG Z T, WANG Q. VSSA-NET: vertical spatial sequence attention network for traffic sign detection[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 28, 3423-3434(2019).
[15] LIU Y Y, PENG J Y, XUE J H et al. TSingNet: Scale-aware and context-rich feature learning for traffic sign detection and recognition in the wild[J]. Neurocomputing, 447, 10-22(2021).
[17] SZEGEDY C, LIU W, JIA Y Q et al. Going deeper with convolutions[C], 1-9(2015).
[18] LIU Z G, DU J, TIAN F et al. MR-CNN: a multi-scale region-based convolutional neural network for small traffic sign recognition[J]. IEEE Access, 7, 57120-57128(2019).
[19] LIU Z W, SHEN C, QI M Y et al. SADANet: integrating scale-aware and domain adaptive for traffic sign detection[J]. IEEE Access, 8, 77920-77933(2020).
[22] WANG C Y, MARK LIAO H Y, WU Y H et al. CSPNet: a new backbone that can enhance learning capability of CNN[C], 1571-1580(2020).
[23] HE K M, ZHANG X Y, REN S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).
[24] LIU S, QI L, QIN H F et al. Path aggregation network for instance segmentation[C], 8759-8768(2018).
[25] GAO S H, CHENG M M, ZHAO K et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).
[26] MA N, ZHANG X, ZHENG H T et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C], 116-131(2018).
[27] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C], 13708-13717(2021).
[28] ZHENG Z H, WANG P, LIU W et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).
[29] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[C], 2999-3007(2017).
[30] ZHU Z, LIANG D, ZHANG S H et al. Traffic-sign detection and classification in the wild[C], 2110-2118(2016).
[31] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[32] OU Z H, XIAO F R, XIONG B Q et al. FAMN: feature aggregation multipath network for small traffic sign detection[J]. IEEE Access, 7, 178798-178810(2019).
[33] LIU Z G, LI D Y, GE S S et al. Small traffic sign detection from large image[J]. Applied Intelligence, 50, 1-13(2020).
[34] LEE W et al. Better to follow, follow to be better: towards precise supervision of feature super-resolution for small object detection[C], 9724-9733.
[35] WANG Z S, WANG J Q, LI Y L et al. Traffic sign recognition with lightweight two-stage model in complex scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 23, 1121-1131(2022).
Get Citation
Copy Citation Text
Daxiang LI, Zhongheng SU, Ying LIU. Road traffic sign recognition algorithm based on improved YOLOv4[J]. Optics and Precision Engineering, 2023, 31(9): 1366
Category: Information Sciences
Received: Jul. 13, 2022
Accepted: --
Published Online: Jun. 6, 2023
The Author Email: Zhongheng SU (Szh1998@stu.xupt.edu.cn)