Geological Journal of China Universities, Volume. 31, Issue 3, 275(2025)

Reconstruction of Global Sea Surface Temperatures during the Early Eocene Climatic Optimum Using Paleoclimate Data Assimilation

ZHANG Haoxun and LI Mingsong*
Author Affiliations
  • Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China
  • show less
    References(65)

    [2] [2] Hollis C J, Hines B R, Littler K, et al. 2015. The Paleocene-Eocene Thermal Maximum at DSDP Site 277, Campbell Plateau, southern Pacific Ocean[J]. Climate of the Past, 11(7): 1009-1025.

    [3] [3] Anagnostou E, John E H, Edgar K M, et al. 2016. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate[J]. Nature, 533(7603): 380-384.

    [4] [4] Anagnostou E, John E H, Babila T L, et al. 2020. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse[J]. Nature Communications, 11(1): 4436.

    [5] [5] Arias P A, Bellouin N, Coppola E, et al. 2021. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[G]//Masson-Delmotte V, Zhai P, Pirani A, et al.(Ed.). Cambridge University Press, Cambridge: 33-144.

    [6] [6] Barnet J S K, Harper D T, LeVay L J, et al. 2020. Coupled evolution of temperature and carbonate chemistry during the Paleocene-Eocene; new trace element records from the low latitude Indian Ocean[J]. Earth and Planetary Science Letters, 545: 116414.

    [7] [7] Barrera E and Huber B. 1991. Paleogene and Early Neogene Oceanography of the Southern Indian Ocean: Leg 119 Foraminifer Stable Isotope Results[M]. Proceedings of the Ocean Drilling Program, Scientific Result, 119: 693-717.

    [8] [8] Bi K, Xie L, Zhang H, et al. 2023. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 619(7970): 533-538.

    [9] [9] Bijl P K, Schouten S, Sluijs A, et al. 2009. Early Palaeogene temperature evolution of the southwest Pacific Ocean[J]. Nature, 461(7265): 776-779.

    [10] [10] Bijl P K, Bendle J A P, Bohaty S M, et al. 2013. Eocene cooling linked to early flow across the Tasmanian Gateway[J]. Proceedings of the National Academy of Sciences, 110(24): 9645-9650.

    [11] [11] Bornemann A, Norris R D, Lyman J A, et al. 2014. Persistent environmental change after the Paleocene-Eocene Thermal Maximum in the eastern North Atlantic[J]. Earth and Planetary Science Letters, 394: 70-81.

    [12] [12] Edwards N R and Marsh R. 2005. Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model[J]. Climate Dynamics, 24(4): 415-433.

    [13] [13] Evans D, Sagoo N, Renema W, et al. 2018. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry[J]. Proceedings of the National Academy of Sciences, 115(6): 1174-1179.

    [14] [14] Fang M and Li X. 2019. An artificial neural networks-based tree ring width proxy system model for paleoclimate data assimilation[J]. Journal of Advances in Modeling Earth Systems, 11(4): 892-904.

    [15] [15] Gillett N P, Kirchmeier-Young M, Ribes A, et al. 2021. Constraining human contributions to observed warming since the pre-industrial period[J]. Nature Climate Change, 11(3): 207-212.

    [16] [16] Hakim G J, Emile-Geay J, Steig E J, et al. 2016. The last millennium climate reanalysis project: Framework and first results[J]. Journal of Geophysical Research: Atmospheres, 121(12): 6745-6764.

    [17] [17] Hines B R, Hollis C J, Atkins C B, et al. 2017. Reduction of oceanic temperature gradients in the early Eocene Southwest Pacific Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 475(2017): 41-54.

    [18] [18] Hollis C J, Handley L, Crouch E M, et al. 2009. Tropical sea temperatures in the high-latitude South Pacific during the Eocene[J]. Geology, 37(2): 99-102.

    [19] [19] Hollis C J, Taylor K W R, Handley L, et al. 2012. Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models[J]. Earth and Planetary Science Letters, 349-350(2012): 53-66.

    [20] [20] Hollis C J, Dunkley Jones T, Anagnostou E, et al. 2019. The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database[J]. Geoscientific Model Development, 12(7): 3149-3206.

    [21] [21] Hopmans E C, Weijers J W H, Schefu E, et al. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 224(1): 107-116.

    [22] [22] Inglis G N, Farnsworth A, Lunt D, et al. 2015. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions[J]. Paleoceanography, 30(7): 1000-1020.

    [23] [23] Inglis G N and Tierney J E. 2020. The TEX86 Paleotemperature Proxy[M]. Cambridge University Press, Cambridge.

    [24] [24] Jian Z, Wang Y, Dang H, et al. 2022. Warm pool ocean heat content regulates ocean-continent moisture transport[J]. Nature, 612(7938): 92-99.

    [25] [25] John C M, Bohaty S M, Zachos J C, et al. 2008. North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling[J]. Paleoceanography, 23(2): PA2217.

    [26] [26] Kozdon R, Kelly D C, Kita N T, et al. 2011. Planktonic foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm tropical sea surface temperatures during the Early Paleogene[J]. Paleoceanography, 26(3):.

    [27] [27] Li M, Lee R Kump, Andy Ridgwell, et al. 2024. Coupled decline in ocean pH and carbonate saturation during the Palaeocene-Eocene Thermal Maximum[J]. Nature Geoscience, 17: 1299-1305.

    [28] [28] Liu Z, Pagani M, Zinniker D, et al. 2009. Global cooling during the Eocene-Oligocene Climate Transition[J]. Science, 323(5918): 1187-1190.

    [29] [29] Lu G and Keller G. 1996. Separating ecological assemblages using stable isotope signals; Late Paleocene to Early Eocene planktic foraminifera, DSDP Site 577[J]. Journal of Foraminiferal Research, 26(2): 103-112.

    [30] [30] Lunt D J, Haywood A M, Schmidt G A, et al. 2012. On the causes of mid-Pliocene warmth and polar amplification[J]. Earth and Planetary Science Letters, 321-322: 128-138.

    [31] [31] Malevich S B, Vetter L and Tierney J E. 2019. Global core top calibration of 18O in planktic foraminifera to sea surface temperature[J]. Paleoceanography and Paleoclimatology, 34(8): 1292-1315.

    [32] [32] McKay M D, Beckman R J and Conover W J. 2000. A comparison of three methods for selecting values of Input variables in the analysis of output from a computer code[J]. Technometrics, 42: 55-61.

    [33] [33] Osman M B, Tierney J E, Zhu J, et al. 2021. Globally resolved surface temperatures since the Last Glacial Maximum[J]. Nature, 599(7884): 239-244.

    [34] [34] Panchuk K, Ridgwell A and Kump L R. 2008. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison[J]. Geology, 36(4): 315-318.

    [35] [35] Pearson P N, Ditchfield P W, Singano J, et al. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs[J]. Nature, 413(6855): 481-487.

    [36] [36] Pearson P N, Van Dongen B E, Nicholas C J, et al. 2007. Stable warm tropical climate through the Eocene Epoch[J]. Geology, 35(3): 211.

    [37] [37] Phipps S J, McGregor H V, Gergis J, et al. 2013. Paleoclimate data-model comparison and the role of climate forcings over the past 1500 years[J]. Journal of Climate, 26(18): 6915-6936.

    [38] [38] Ridgwell A and Hargreaves J C. 2007. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model[J]. Global Biogeochemical Cycles, 21(2): GB2008.

    [39] [39] Ridgwell A. 2007. Interpreting transient carbonate compensation depth changes by marine sediment core modeling[J]. Paleoceanography, 22(4): PA410.

    [40] [40] Si W and Aubry M P. 2018. Vital effects and ecologic adaptation of photosymbiont-bearing planktonic foraminifera during the Paleocene-Eocene Thermal Maximum, implications for paleoclimate[J]. Paleoceanography and Paleoclimatology, 33(1): 112-125.

    [41] [41] Sluijs A, Schouten S, Pagani M, et al. 2006. Subtropical arctic ocean temperatures during the Palaeocene/Eocene thermal maximum[J]. Nature, 441(7093): 610-613.

    [42] [42] Sluijs A, Schouten S, Donders T H, et al. 2009. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2[J]. Nature Geoscience, 2(11): 777-780.

    [43] [43] Song H, Huang S, Jia E, et al. 2020. Flat latitudinal diversity gradient caused by the Permian-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences, 117(30): 17578-17583.

    [44] [44] Spero H J, Bijma J, Lea D W, et al. 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 390(6659): 497-500.

    [45] [45] Steffen W, Richardson K, Rockstrm J, et al. 2020. The emergence and evolution of Earth System Science[J]. Nature Reviews Earth & Environment, 1(1): 54-63.

    [46] [46] Steiger N and Hakim G. 2016. Multi-timescale data assimilation for atmosphere-ocean state estimates[J]. Climate of The Past, 12(6): 1375-1388.

    [47] [47] Stott L D, Kennett J P, Shackleton N J, et al. 1990. The Evolution of Antarctic Surface Waters during the Paleogene: Inferences from the Stable Isotopic Composition of Planktonic Foraminifers, ODP Leg 113[M]. Proceedings of the Ocean Drilling Program, Scientific Result, 113: 849-863.

    [48] [48] Tardif R, Hakim G J, Perkins W A, et al. 2019. Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling[J]. Climate of the Past, 15(4): 1251-1273.

    [49] [49] Tierney J E and Tingley M P. 2014. A Bayesian, spatially-varying calibration model for the TEX86 proxy[J]. Geochimica et Cosmochimica Acta, 127: 83-106.

    [50] [50] Tierney J E, Malevich S B, Gray W, et al. 2019. Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera[J]. Paleoceanography and Paleoclimatology, 34(12): 2005-2030.

    [51] [51] Tierney J E, Poulsen C J, Montaez I P, et al. 2020a. Past climates inform our future[J]. Science, 370(6517): eaay3701.

    [52] [52] Tierney J E, Zhu J, King J, et al. 2020b. Glacial cooling and climate sensitivity revisited[J]. Nature, 584(7822): 569-573.

    [53] [53] Tierney J E, Zhu J, Li M, et al. 2022. Spatial patterns of climate change across the Paleocene-Eocene Thermal Maximum[J]. Proceedings of the National Academy of Sciences, 119(42): e2205326119.

    [54] [54] Tripati A K, Delaney M L, Zachos J C, et al. 2003. Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera[J]. Paleoceanography, 18(4): 10.1029/2003PA000937.

    [55] [55] von Storch H. 2000. Combining Paleoclimatic Evidence and GCMs by Means of Data Assimilation through Upscaling and Nudging (Datun)[M]. 11th Symposium on Global Change Studies. American Meteorological Society: 15-18.

    [56] [56] Westerhold T, Rhl U, Donner B, et al. 2018. Global extent of early Eocene hyperthermal events: A new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209)[J]. Paleoceanography and Paleoclimatology, 33(6): 626-642.

    [57] [57] Westerhold T, Marwan N, Drury A J, et al. 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 369(6509): 1383.

    [58] [58] Whitaker J S and Hamill T M. 2002. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 130(7): 1913-1924.

    [59] [59] Widmann M, Goosse H, Schrier G, et al. 2010. Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium[J]. Climate of the Past, 6(5): 627-644.

    [60] [60] Winguth A M E, Shields C A and Winguth C. 2015. Transition into a Hothouse World at the Permian-Triassic boundary—A model study[J]. Palaeogeography Palaeoclimatology Palaeoecology, 440: 316-327.

    [61] [61] Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686-693.

    [62] [62] Zeebe R E and Tyrrell T. 2019. History of carbonate ion concentration over the last 100 million years II: Revised calculations and new data[J]. Geochimica et Cosmochimica Acta, 257: 373-392.

    [63] [63] Zhang Y G and Liu X. 2018. Export depth of the TEX86 signal[J]. Paleoceanography and Paleoclimatology, 33(7): 666-671.

    [64] [64] Zhu J, Poulsen C J and Tierney J E. 2019. Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks[J]. Science Advances, 5(9): 10.

    [65] [65] Zhu J, Poulsen C J and Otto-Bliesner B L. 2020a. High climate sensitivity in CMIP6 model not supported by paleoclimate[J]. Nature Climate Change, 10(5): 378-379.

    [66] [66] Zhu J, Poulsen C J, Otto-Bliesner B L, et al. 2020b. Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction[J]. Earth and Planetary Science Letters, 537: 116164.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Haoxun, LI Mingsong. Reconstruction of Global Sea Surface Temperatures during the Early Eocene Climatic Optimum Using Paleoclimate Data Assimilation[J]. Geological Journal of China Universities, 2025, 31(3): 275

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 20, 2024

    Accepted: Aug. 21, 2025

    Published Online: Aug. 21, 2025

    The Author Email: LI Mingsong (msli@pku.edu.cn)

    DOI:10.16108/j.issn1006-7493.2024041

    Topics