Geological Journal of China Universities, Volume. 31, Issue 3, 275(2025)
Reconstruction of Global Sea Surface Temperatures during the Early Eocene Climatic Optimum Using Paleoclimate Data Assimilation
[2] [2] Hollis C J, Hines B R, Littler K, et al. 2015. The Paleocene-Eocene Thermal Maximum at DSDP Site 277, Campbell Plateau, southern Pacific Ocean[J]. Climate of the Past, 11(7): 1009-1025.
[3] [3] Anagnostou E, John E H, Edgar K M, et al. 2016. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate[J]. Nature, 533(7603): 380-384.
[4] [4] Anagnostou E, John E H, Babila T L, et al. 2020. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse[J]. Nature Communications, 11(1): 4436.
[5] [5] Arias P A, Bellouin N, Coppola E, et al. 2021. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[G]//Masson-Delmotte V, Zhai P, Pirani A, et al.(Ed.). Cambridge University Press, Cambridge: 33-144.
[6] [6] Barnet J S K, Harper D T, LeVay L J, et al. 2020. Coupled evolution of temperature and carbonate chemistry during the Paleocene-Eocene; new trace element records from the low latitude Indian Ocean[J]. Earth and Planetary Science Letters, 545: 116414.
[7] [7] Barrera E and Huber B. 1991. Paleogene and Early Neogene Oceanography of the Southern Indian Ocean: Leg 119 Foraminifer Stable Isotope Results[M]. Proceedings of the Ocean Drilling Program, Scientific Result, 119: 693-717.
[8] [8] Bi K, Xie L, Zhang H, et al. 2023. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 619(7970): 533-538.
[9] [9] Bijl P K, Schouten S, Sluijs A, et al. 2009. Early Palaeogene temperature evolution of the southwest Pacific Ocean[J]. Nature, 461(7265): 776-779.
[10] [10] Bijl P K, Bendle J A P, Bohaty S M, et al. 2013. Eocene cooling linked to early flow across the Tasmanian Gateway[J]. Proceedings of the National Academy of Sciences, 110(24): 9645-9650.
[11] [11] Bornemann A, Norris R D, Lyman J A, et al. 2014. Persistent environmental change after the Paleocene-Eocene Thermal Maximum in the eastern North Atlantic[J]. Earth and Planetary Science Letters, 394: 70-81.
[12] [12] Edwards N R and Marsh R. 2005. Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model[J]. Climate Dynamics, 24(4): 415-433.
[13] [13] Evans D, Sagoo N, Renema W, et al. 2018. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry[J]. Proceedings of the National Academy of Sciences, 115(6): 1174-1179.
[14] [14] Fang M and Li X. 2019. An artificial neural networks-based tree ring width proxy system model for paleoclimate data assimilation[J]. Journal of Advances in Modeling Earth Systems, 11(4): 892-904.
[15] [15] Gillett N P, Kirchmeier-Young M, Ribes A, et al. 2021. Constraining human contributions to observed warming since the pre-industrial period[J]. Nature Climate Change, 11(3): 207-212.
[16] [16] Hakim G J, Emile-Geay J, Steig E J, et al. 2016. The last millennium climate reanalysis project: Framework and first results[J]. Journal of Geophysical Research: Atmospheres, 121(12): 6745-6764.
[17] [17] Hines B R, Hollis C J, Atkins C B, et al. 2017. Reduction of oceanic temperature gradients in the early Eocene Southwest Pacific Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 475(2017): 41-54.
[18] [18] Hollis C J, Handley L, Crouch E M, et al. 2009. Tropical sea temperatures in the high-latitude South Pacific during the Eocene[J]. Geology, 37(2): 99-102.
[19] [19] Hollis C J, Taylor K W R, Handley L, et al. 2012. Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models[J]. Earth and Planetary Science Letters, 349-350(2012): 53-66.
[20] [20] Hollis C J, Dunkley Jones T, Anagnostou E, et al. 2019. The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database[J]. Geoscientific Model Development, 12(7): 3149-3206.
[21] [21] Hopmans E C, Weijers J W H, Schefu E, et al. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 224(1): 107-116.
[22] [22] Inglis G N, Farnsworth A, Lunt D, et al. 2015. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions[J]. Paleoceanography, 30(7): 1000-1020.
[23] [23] Inglis G N and Tierney J E. 2020. The TEX86 Paleotemperature Proxy[M]. Cambridge University Press, Cambridge.
[24] [24] Jian Z, Wang Y, Dang H, et al. 2022. Warm pool ocean heat content regulates ocean-continent moisture transport[J]. Nature, 612(7938): 92-99.
[25] [25] John C M, Bohaty S M, Zachos J C, et al. 2008. North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling[J]. Paleoceanography, 23(2): PA2217.
[26] [26] Kozdon R, Kelly D C, Kita N T, et al. 2011. Planktonic foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm tropical sea surface temperatures during the Early Paleogene[J]. Paleoceanography, 26(3):.
[27] [27] Li M, Lee R Kump, Andy Ridgwell, et al. 2024. Coupled decline in ocean pH and carbonate saturation during the Palaeocene-Eocene Thermal Maximum[J]. Nature Geoscience, 17: 1299-1305.
[28] [28] Liu Z, Pagani M, Zinniker D, et al. 2009. Global cooling during the Eocene-Oligocene Climate Transition[J]. Science, 323(5918): 1187-1190.
[29] [29] Lu G and Keller G. 1996. Separating ecological assemblages using stable isotope signals; Late Paleocene to Early Eocene planktic foraminifera, DSDP Site 577[J]. Journal of Foraminiferal Research, 26(2): 103-112.
[30] [30] Lunt D J, Haywood A M, Schmidt G A, et al. 2012. On the causes of mid-Pliocene warmth and polar amplification[J]. Earth and Planetary Science Letters, 321-322: 128-138.
[31] [31] Malevich S B, Vetter L and Tierney J E. 2019. Global core top calibration of 18O in planktic foraminifera to sea surface temperature[J]. Paleoceanography and Paleoclimatology, 34(8): 1292-1315.
[32] [32] McKay M D, Beckman R J and Conover W J. 2000. A comparison of three methods for selecting values of Input variables in the analysis of output from a computer code[J]. Technometrics, 42: 55-61.
[33] [33] Osman M B, Tierney J E, Zhu J, et al. 2021. Globally resolved surface temperatures since the Last Glacial Maximum[J]. Nature, 599(7884): 239-244.
[34] [34] Panchuk K, Ridgwell A and Kump L R. 2008. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison[J]. Geology, 36(4): 315-318.
[35] [35] Pearson P N, Ditchfield P W, Singano J, et al. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs[J]. Nature, 413(6855): 481-487.
[36] [36] Pearson P N, Van Dongen B E, Nicholas C J, et al. 2007. Stable warm tropical climate through the Eocene Epoch[J]. Geology, 35(3): 211.
[37] [37] Phipps S J, McGregor H V, Gergis J, et al. 2013. Paleoclimate data-model comparison and the role of climate forcings over the past 1500 years[J]. Journal of Climate, 26(18): 6915-6936.
[38] [38] Ridgwell A and Hargreaves J C. 2007. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model[J]. Global Biogeochemical Cycles, 21(2): GB2008.
[39] [39] Ridgwell A. 2007. Interpreting transient carbonate compensation depth changes by marine sediment core modeling[J]. Paleoceanography, 22(4): PA410.
[40] [40] Si W and Aubry M P. 2018. Vital effects and ecologic adaptation of photosymbiont-bearing planktonic foraminifera during the Paleocene-Eocene Thermal Maximum, implications for paleoclimate[J]. Paleoceanography and Paleoclimatology, 33(1): 112-125.
[41] [41] Sluijs A, Schouten S, Pagani M, et al. 2006. Subtropical arctic ocean temperatures during the Palaeocene/Eocene thermal maximum[J]. Nature, 441(7093): 610-613.
[42] [42] Sluijs A, Schouten S, Donders T H, et al. 2009. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2[J]. Nature Geoscience, 2(11): 777-780.
[43] [43] Song H, Huang S, Jia E, et al. 2020. Flat latitudinal diversity gradient caused by the Permian-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences, 117(30): 17578-17583.
[44] [44] Spero H J, Bijma J, Lea D W, et al. 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 390(6659): 497-500.
[45] [45] Steffen W, Richardson K, Rockstrm J, et al. 2020. The emergence and evolution of Earth System Science[J]. Nature Reviews Earth & Environment, 1(1): 54-63.
[46] [46] Steiger N and Hakim G. 2016. Multi-timescale data assimilation for atmosphere-ocean state estimates[J]. Climate of The Past, 12(6): 1375-1388.
[47] [47] Stott L D, Kennett J P, Shackleton N J, et al. 1990. The Evolution of Antarctic Surface Waters during the Paleogene: Inferences from the Stable Isotopic Composition of Planktonic Foraminifers, ODP Leg 113[M]. Proceedings of the Ocean Drilling Program, Scientific Result, 113: 849-863.
[48] [48] Tardif R, Hakim G J, Perkins W A, et al. 2019. Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling[J]. Climate of the Past, 15(4): 1251-1273.
[49] [49] Tierney J E and Tingley M P. 2014. A Bayesian, spatially-varying calibration model for the TEX86 proxy[J]. Geochimica et Cosmochimica Acta, 127: 83-106.
[50] [50] Tierney J E, Malevich S B, Gray W, et al. 2019. Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera[J]. Paleoceanography and Paleoclimatology, 34(12): 2005-2030.
[51] [51] Tierney J E, Poulsen C J, Montaez I P, et al. 2020a. Past climates inform our future[J]. Science, 370(6517): eaay3701.
[52] [52] Tierney J E, Zhu J, King J, et al. 2020b. Glacial cooling and climate sensitivity revisited[J]. Nature, 584(7822): 569-573.
[53] [53] Tierney J E, Zhu J, Li M, et al. 2022. Spatial patterns of climate change across the Paleocene-Eocene Thermal Maximum[J]. Proceedings of the National Academy of Sciences, 119(42): e2205326119.
[54] [54] Tripati A K, Delaney M L, Zachos J C, et al. 2003. Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera[J]. Paleoceanography, 18(4): 10.1029/2003PA000937.
[55] [55] von Storch H. 2000. Combining Paleoclimatic Evidence and GCMs by Means of Data Assimilation through Upscaling and Nudging (Datun)[M]. 11th Symposium on Global Change Studies. American Meteorological Society: 15-18.
[56] [56] Westerhold T, Rhl U, Donner B, et al. 2018. Global extent of early Eocene hyperthermal events: A new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209)[J]. Paleoceanography and Paleoclimatology, 33(6): 626-642.
[57] [57] Westerhold T, Marwan N, Drury A J, et al. 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 369(6509): 1383.
[58] [58] Whitaker J S and Hamill T M. 2002. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 130(7): 1913-1924.
[59] [59] Widmann M, Goosse H, Schrier G, et al. 2010. Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium[J]. Climate of the Past, 6(5): 627-644.
[60] [60] Winguth A M E, Shields C A and Winguth C. 2015. Transition into a Hothouse World at the Permian-Triassic boundary—A model study[J]. Palaeogeography Palaeoclimatology Palaeoecology, 440: 316-327.
[61] [61] Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686-693.
[62] [62] Zeebe R E and Tyrrell T. 2019. History of carbonate ion concentration over the last 100 million years II: Revised calculations and new data[J]. Geochimica et Cosmochimica Acta, 257: 373-392.
[63] [63] Zhang Y G and Liu X. 2018. Export depth of the TEX86 signal[J]. Paleoceanography and Paleoclimatology, 33(7): 666-671.
[64] [64] Zhu J, Poulsen C J and Tierney J E. 2019. Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks[J]. Science Advances, 5(9): 10.
[65] [65] Zhu J, Poulsen C J and Otto-Bliesner B L. 2020a. High climate sensitivity in CMIP6 model not supported by paleoclimate[J]. Nature Climate Change, 10(5): 378-379.
[66] [66] Zhu J, Poulsen C J, Otto-Bliesner B L, et al. 2020b. Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction[J]. Earth and Planetary Science Letters, 537: 116164.
Get Citation
Copy Citation Text
ZHANG Haoxun, LI Mingsong. Reconstruction of Global Sea Surface Temperatures during the Early Eocene Climatic Optimum Using Paleoclimate Data Assimilation[J]. Geological Journal of China Universities, 2025, 31(3): 275
Received: May. 20, 2024
Accepted: Aug. 21, 2025
Published Online: Aug. 21, 2025
The Author Email: LI Mingsong (msli@pku.edu.cn)