Chinese Internal Combustion Engine Engineering, Volume. 46, Issue 4, 27(2025)
Mechanisms of Chemical Kinetics and Characteristics of NOx Generation from Ammonia-Hydrogen Combustion
[1] [1] PARK Y K, KIM B S. Catalytic removal of nitrogen oxides(NO, NO2, N2O)from ammonia-fueled combustion exhaust: a review of applicable technologies[J/OL]. Chemical Engineering Journal, 2023, 461: 141958(2023-02-19)[2024-11-18].DOI: 10.1016/j.cej.2023.141958.
[2] [2] KONG F, WANG Y F. How to understand carbon neutrality in the context of climate change? With special reference to China[J/OL]. Sustainable Environment, 2022, 8(1): 2062824(2022-04-19)[2024-11-19]. DOI: 10.1080/27658511.2022.2062824.
[3] [3] WU X H, TIAN Z Q, GUO J. A review of the theoretical research and practical progress of carbon neutrality[J]. Sustainable Operations and Computers, 2022, 3: 54–66.
[4] [4] CHU H Q, FENG S J, HONG R, et al. Effects of ammonia addition on soot formation in hydrocarbon fuels combustion: challenges and prospects[J/OL]. Fuel, 2024, 360: 130569(2023-12-12)[2024-11-19]. DOI: 10.1016/j.fuel.2023.130569.
[5] [5] BLANCO E C, SANCHEZ A, MARTIN M, et al. Methanol and ammonia as emerging green fuels: evaluation of a new power generation paradigm[J/OL]. Renewable and Sustainable Energy Reviews, 2023, 175: 113195(2023-01-17)[2024-11-19]. DOI: 10.1016/j.rser.2023.113195.
[6] [6] CHOI J, SURYANTO B H R, WANG D B, et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies[J/OL]. Nature Communications, 2020, 11(1): 5546(2020-11-03)[2024-11-19]. DOI: 10.1038/s41467-020-19130-z.
[7] [7] EL-ADAWY M, NEMITALLAH M A, ABDELHAFEZ A. Towards sustainable hydrogen and ammonia internal combustion engines: challenges and opportunities[J/OL]. Fuel, 2024, 364: 131090(2024-02-02)[2024-11-18]. DOI: 10.1016/j.fuel.2024.131090.
[8] [8] HU X Z, LI J G, PAN J Y, et al. On combustion and emission characteristics of ammonia/hydrogen engines: emphasis on energy ratio and equivalence ratio[J/OL]. Fuel, 2024, 365: 131183(2023-02-13)[2024-11-17]. DOI: 10.1016/j.fuel.2024.131183.
[9] [9] KURIEN C, MITTAL M. Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines[J/OL]. Energy Conversion and Management, 2022, 251: 114990(2021-11-12)[2024-11-19]. DOI: 10.1016/j.enconman.2021.114990.
[10] [10] DIMITRIOU P, JAVAID R. A review of ammonia as a compression ignition engine fuel[J]. International Journal of Hydrogen Energy, 2020, 45(11): 7098–7118.
[11] [11] ZHANG Y X, ZHOU W, LIANG Y Y, et al. An experimental and detailed kinetic modeling study of the auto-ignition of NH3/diesel mixtures: part 1 NH3 substitution ratio from 20% to 90%[J/OL]. Combustion and Flame, 2023, 251: 112391(2022-10-04)[2024-11-18]. DOI: 10.1016/j.combustflame.2022.112391.
[12] [12] LI Y Y, ZHANG Y, FANG J, et al. Combustion enhancement of ammonia by co-firing dimethyl ether/hydrogen mixtures under methane-equivalent calorific value[J/OL]. Combustion and Flame, 2024, 265: 113490(2024-05-07)[2024-11-11]. DOI: 10.1016/j.combustflame.2024.113490.
[13] [13] ZHOU Q X, TIAN J P, ZHANG X L, et al. Investigation of the ammonia-methane-air laminar burning characteristics at high temperatures and pressures[J/OL]. Fuel, 2024, 365: 130987(2024-02-13)[2024-11-19]. DOI: 10.1016/j.fuel.2024.130987.
[14] [14] CHAI W S, BAO Y L, JIN P F, et al. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels[J/OL]. Rene-wable and Sustainable Energy Reviews, 2021, 147: 111254(2021-05-28)[2024-11-19]. DOI: 10.1016/j.rser.2021.111254.
[15] [15] XU X W, LIU E L, ZHU N, et al. Review of the current status of ammonia-blended hydrogen fuel engine development[J/OL]. Energies, 2022, 15(3): 1023(2022-01-25)[2024-11-19]. DOI: 10.3390/en15031023.
[16] [16] LESMANA H, ZHU M M, ZHANG Z Z, et al. Experimental and kinetic modelling studies of laminar flame speed in mixtures of partially dissociated NH3 in air[J/OL]. Fuel, 2020, 278: 118428(2020-06-20)[2024-11-19]. DOI: 10.1016/j.fuel.2020.118428.
[17] [17] SWIFT E, KANE S, NORTHROP W F. Operating range and emissions from ammonia-hydrogen mixtures in spark-ignited engines[C/OL]//Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2022, 86540: V001T02A013(2022-11-23)[2024-11-18]. DOI: 10.1115/ICEF2022-91825.
[18] [18] LHUILLIER C, BREQUIGNY P, CONTINO F, et al. Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions[J/OL]. Fuel, 2020, 269: 117448(2020-02-19)[2024-11-18]. DOI: 10.1016/j.fuel.2020.117448.
[19] [19] QI Y L, LIU W L, LIU S, et al. A review on ammonia-hydrogen fueled internal combustion engines[J/OL]. eTransportation, 2023: 100288(2023-09-27)[2024-11-17]. DOI: 10.1016/j.etran.2023.100288.
[20] [20] NAWAZ B, NASIM M N, DAS S K, et al. Combustion characteristics and emissions of nitrogen oxides(NO, NO2, N2O)from spherically expanding laminar flames of ammonia–hydrogen blends[J]. International Journal of Hydrogen Energy, 2024, 65: 164–176.
[21] [21] WESTLYE F R, IVARSSON A, SCHRAMM J. Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine[J]. Fuel, 2013, 111: 239–247.
[22] [22] YANG R M, LIU Z T, LIU J L. The methodology of decoupling fuel and thermal nitrogen oxides in multi-dimensional computational fluid dynamics combustion simulation of ammonia-hydrogen spark ignition engines[J]. International Journal of Hydrogen Energy, 2024, 55: 300–318.
[23] [23] DINESH M H, PANDEY J K, KUMAR G N. Study of performance, combustion, and NOxemission behavior of an SI engine fuelled with ammonia/hydrogen blends at various compression ratio[J]. International Journal of Hydrogen Energy, 2022, 47(60): 25391–25403.
[24] [24] OTOMO J, KOSHI M, MITSUMORI T, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion[J]. International Journal of Hydrogen Energy, 2018, 43(5): 3004–3014.
[25] [25] SONG Y, HASHEMI H, CHRISTENSEN J M, et al. Ammonia oxidation at high pressure and intermediate temperatures[J]. Fuel, 2016, 181: 358–65.
[26] [26] SYAGNI A, CAVALLOTTI C, ARUNTHANAYOTHIN S, et al. An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia[J]. Reaction Chemistry & Engineering, 2020, 5(4): 696–711.
[27] [27] YAN B B, WU Z T, ZHOU S Q, et al. A critical review of NH3–H2 combustion mechanisms[J/OL]. Renewable and Sustainable Energy Reviews, 2024, 196: 114363(2024-03-12)[2024-11-19]. DOI: 10.1016/j.rser.2024.114363.
[28] [28] KLIPPENSTEIN S J, HARDING L, RUSCIC B, et al. Thermal decomposition of NH2OH and subsequent reactions: ab initio transition state theory and reflected shock tube experiments[J]. The Journal of Physical Chemistry A, 2009, 113(38): 10241–10259.
[29] [29] MATHIEU O, PETERSN E L. Experimental and modeling study on the high-temperature oxidation of ammonia and related NOxchemistry[J]. Combust Flame, 2015, 162(3): 554–570.
[30] [30] GLARBORG P, MILLERJ A, RUSCIC B, et al. Modeling nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science, 2018, 67: 31–68.
[31] [31] MEI B, ZHANG X Y, MA S Y, et al. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions[J]. Combustion and Flame, 2019, 210: 236–246.
[32] [32] SHRESTHA K P, SEIDEL L, ZEUCH T, et al. Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides[J]. Energy & Fuels, 2018, 32(10): 10202–10217.
[33] [33] SINGH A S, SHARMA D, DASH S K, et al. Effect of intermediate radical on NOxand de‐NOxcharacteristics of NH3/H2/air flames at high pressure[J]. Chemical Engineering & Technology, 2023, 46(8): 1545–1553.
[34] [34] LI Z H, ZHANG W, CHEN Z H, et al. A kinetics mechanism of NOxformation and reduction based on density functional theory[J/OL]. Science of the Total Environment, 2023, 867: 161519(2023-01-12)[2024-11-19]. DOI: 10.1016/j.scitotenv.2023.161519.
[35] [35] BURDEN S, TEKAWADE A, OENHLSCHAEGER M A. Ignition delay times for jet and diesel fuels: constant volume spray and gas-phase shock tube measurements[J]. Fuel, 2018, 219: 312–319.
[36] [36] BAI Y Q, WANG Y, WANG X P, et al. Development of a skeletal mechanism for tri-component diesel surrogate fuel:n-hexadecane/iso-cetane/l-methylnaphthalene[J/OL]. Fuel, 2020, 259: 116217(2019-09-19)[2024-11-19]. DOI: 10.1016/j.fuel.2019.116217.
[38] [38] HAYAKAWA A, GOTO T, MIMOTO R, et al. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures[J]. Fuel, 2015, 159: 98–106.
[39] [39] ICHIKAWA A, HAYAKAWA A, KITAGAWA Y, et al. Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9570–9578.
[40] [40] ZHANG X, MOOSAKUTTY S P, RAJAN R P, et al. Combustion chemistry of ammonia/hydrogen mixtures: jet-stirred reactor measurements and comprehensive kinetic modeling[J/OL]. Combustion and Flame, 2021, 234: 111653(2021-08-12)[2024-11-19]. DOI: 10.1016/j.combustflame.2021.111653.
[41] [41] ZHOU S K, YANG W J, ZHENG S J, et al. An experimental and kinetic modeling study on the low and intermediate temperatures oxidation of NH3/O2/Ar, NH3/H2/O2/Ar, NH3/CO/O2/Ar, and NH3/CH4/O2/Ar mixtures in a jet-stirred reactor[J/OL]. Combustion and Flame, 2023, 248: 112529(2022-12-10)[2024-11-19]. DOI: 10.1016/j.combustflame.2022.112529.
[42] [42] YAN Y C, LIU Z T, LIU J L. An evaluation of the conversion of gasoline and natural gas spark ignition engines to ammonia/hydrogen operation from the perspective of laminar flame speed[J/OL]. Journal of Energy Resources Technology, 2023, 145(1): 012302(2022-07-11)[2024-11-19]. DOI: 10.1115/1.4054754.
[43] [43] YAN Y C, LIU Z T, LIU J L. Hydrogen enriched ammonia engines: assessment of hydrogen concentration in the fuel feed from the laminar flame speed viewpoint[C/OL]//Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2022, 86540: V001T02A002(2022-11-23)[2024-11-19]. DOI: 10.1115/ICEF 2022-88682.
[44] [44] SAKO N, HAYASHI J, SAKO T, et al. Nitrogen-origin-determination in NOxformation under ammonia/methane/air cocombustion using a nitrogen-tagged reaction model[J/OL]. Combustion and Flame, 2024, 259: 113210(2023-11-28)[2024-11-19]. DOI: 10.1016/j.combustflame.2023.113210.
[45] [45] YAN Y, YANG R, LIU Z, et al. Nitrogen oxides emission characteristics of zero-carbon ammonia-hydrogen fuels for internal combustion engines[C/OL]//SAE Technical Paper, 2023: 2023-01-0334(2023-11-04)[2024-11-19]. DOI: 10.4271/2023-01-0334.
[46] [46] WU B Y, WANG Y S, WANG D C, et al. Generation mechanism and emission characteristics of N2O and NOxin ammonia-diesel dual-fuel engine[J/OL]. Energy, 2023, 284: 129291(2024-10-16)[2024-11-17]. DOI: 10.1016/j.energy.2023.129291.
[47] [47] YANG R M, YAN Y C, LIU Z, et al. Formation and evolution of thermal and fuel nitrogen oxides in the turbulent combustion field of ammonia internal combustion engines[C/OL]//SAE Technical Paper, 2023: 2023-01-0192(2023-04-11)[2024-11-19]. DOI: 10.4271/2023-01-0192.
[48] [48] ARIEMMA G B, SORRENTINO G, RAGYCCI R, et al. Ammonia/methane combustion: stability and NOxemissions[J/OL]. Combustion and Flame, 2022, 241: 112071(2023-03-25)[2024-11-16]. DOI: 10.1016/j.combustflame.2022.112071.
Get Citation
Copy Citation Text
ZHANG Wei, CHEN Shuai, LI Zehong, CHEN Zhaohui, ZHOU Mayi, MA Zhenzhu. Mechanisms of Chemical Kinetics and Characteristics of NOx Generation from Ammonia-Hydrogen Combustion[J]. Chinese Internal Combustion Engine Engineering, 2025, 46(4): 27
Received: Oct. 29, 2024
Accepted: Aug. 22, 2025
Published Online: Aug. 22, 2025
The Author Email: CHEN Zhaohui (chenzhaohuiok@sina.com)