Journal of Inorganic Materials, Volume. 39, Issue 1, 17(2024)
[3] JOHNSON R W, PALMER M, WANG C et al. Packaging materials and approaches for high temperature SiC power devices[J]. Advancing Microelectronics, 8(2004).
[6] XIE M, GAN Y, WANG H. Research on the strategy of new material power for 2035[J]. Strategic Study of CAE, 1(2020).
[7] MA Y, TU X J. Global IC industry: growth, migration and remodeling[J]. Information and Communications Technology and Policy, 68(2022).
[8] HUANG F L, ZHU H. Semiconductor integrated circuit business unit management strategy[J]. Manager Journal, 8: 58(2020).
[9] WANG X. Application status and development trend of semiconductor materials[J]. Lamps & Lighting, 1: 67(2022).
[10] CAO J, ZHANG Z Q. Advances in silicon carbide power module packaging technology[J]. Applications of IC, 20(2018).
[11] WANG R D. Advanced packaging promotes new development of semiconductor industry[J]. China Integrated Circuit, 26(2022).
[12] WU Y B, DAI X P, WANG Y G et al. Research progress on advanced interconnect technologies in IGBT power module packaging[J]. High Power Converter Technology, 6(2015).
[13] YUAN G Z[J]. Micro-scale mechanical properties of lead-free solder joint interconnect interfaces for electronic packaging(2016).
[14] XU H Y, XU H Y, ZANG L K et al. Advances in low-temperature sintered copper-based electronic pastes for power device chip interconnects[J]. Electronic Components & Materials, 9(2022).
[15] DONG Z Z[J]. Research on some key issues of low-power silicon carbide integrated modules(2022).
[16] HARTNETT A, BUERKI S[conf-proc], 470-474(2009).
[17] HUMSTON G, JACOBSON D. Principles of soldering and brazing[J]. USA: ASM International(1993).
[18] FAN J L. Controlled preparation and low-temperature sintering of silver/copper nanoparticles and their interconnection applications in microelectronic packaging[J]. Shenzhen: Doctoral dissertation, University of Chinese Academy of Sciences (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences)(2020).
[19] SHEN B W, LIU G H, GAO L Q et al. Research progress of new low temperature lead-free solder[J]. Precious Metals, 1(2022).
[20] GANESAN SANKA, PECHT MICHAEL, Lead-free electronics, Hoboken N.J.[J]. Wiley-Interscience(2006).
[23] VIVEK C, JESPER H, JOHN H. Design of lead-free candidate alloys for high-temperature soldering based on the Au-Sn system[J]. Materials and Design, 31: 4638(2010).
[24] HARPSTER T J, NAJAFI K. Field-assisted bonding of glass to Si-Au eutectic solder for packaging applications. 16th IEEE Annual International Conference on Micro Electro Mechanical Systems[J]. Japan: IEEE(2003).
[25] DREVIN B A, BADAWI F, LACROIX F et al[conf-proc]. Investigation of die attach for SiC power device for 300 ℃ applications. 9th European Conference on Silicon Carbide and Related Materials (ECSCRM 2012).
[26] HASSAM S, ROGEZ J, BAHARI Z. Experimental phase diagram of the AuSb-InSb section in the Au-In-Sb system[J]. Journal of Chemical Thermodynamics, 70: 168(2014).
[28] LAU B L, HAN Y, ZHANG H Y et al. Development of fluxles bonding using deposited gold-indium multi-layer composite for heterogeneous silicon micro-cooler stacking. IEEE 16th Electronics Packaging Technology Conference (EPTC)[J]. Singapore: IEEE(2014).
[29] KOSTOV A, GOMIDZELOVIC L, MILOSAVLJEVIC A et al. Thermodynamic characterization of solder Au-Ga alloys[J]. Materials Chemistry and Physics, 241: 122278(2020).
[30] XU J C, WU M F, PU J et al. Novel Au-based solder alloys: a potential answer for electrical packaging problem[J]. Advances in Materials Science and Engineering, 4969647(2020).
[33] ROH M H, NISHIKAWA H, JUNG J P et al. Trasient liquid phase bonding for power semiconductor[J]. The Korean Microelectronics and Packaging Society, 27(2017).
[40] YANG T L, AOKI T, MATSUMOTO K et al. Full intermetallic joints for chip stacking by using thermal gradient bonding[J]. Acta Materialia, 113: 90(2016).
[41] FENG J Y, HANG C J, TIAN Y H et al. Growth kinetics of Cu6Sn5 intermetallic compound in Cu-liquid Sn interfacial reaction enhanced by electric current[J]. Scientific Reports, 8: 1175(2018).
[42] LIU B L, TIAN Y H, WANG C X et al. Ultrafast formation of unidirectional and reliable Cu3Sn-based intermetallic joints assisted by electric current[J]. Intermetallics, 80: 26(2017).
[43] ZHAO H Y, LIU J H, LI Z L et al. Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process[J]. Materials Letters, 186: 283(2017).
[54] SHAO H K, WU A P, BAO Y D et al. Microstructure characterization and mechanical behavior for Ag3Sn joint produced by foil- based TLP bonding in air atmosphere[J]. Materials Science & Engineering A, 680: 221(2017).
[56] YOON J W, LEE B S. Initial interfacial reactions of Ag/In/Ag and Au/In/Au joints during transient liquid phase bonding[J]. Microelectronic Engineering, 201: 6(2018).
[57] CHOI W K, PREMACHANDRAN C S, CHIEW O S et al[J]. San Diego, CA, USA(2009).
[59] LEE C K, YU A B, YAN L L et al. Characterization of intermediate In/Ag layers of low temperature fluxless solder based wafer bonding for MEMS packaging[J]. Sensors and Actuators A: Physical, 154: 85(2009).
[60] MOKHTARI O. A review: formation of voids in solder joint during the transient liquid phase bonding process-causes and solutions[J]. Microelectronics Reliability, 98: 95(2019).
[61] ZHANG W, YAO J J, ZHAN K et al. Conductive adhesive research progress[J]. Science & Technology Review, 56(2018).
[62] LI Y, LU D, WONG C P[M]. NY(2010).
[63] LI S H. Gold conductive adhesive[J]. China Adhesives, 33(1998).
[64] WANG Y H, HUANG A, XIE H et al. Isotropical conductive adhesives with very-long silver nanowires as conductive fillers[J]. Journal of Materials Science: Materials Electronics, 28: 10(2017).
[65] XIONG S H, YANG R C, WU D et al. The effect of silver powder morphology and size on the performance of conductive adhesives[J]. Electronic Components & Materials, 14(2005).
[66] WAN C, WANG H Q, DU B et al. The effect of silver powder morphology and surface treatment on the performance of conductive adhesives[J]. Electronics Process Technology, 72(2011).
[67] QIAO W Y, BAO H, LI X H et al. Research on electrical conductive adhesives filled with mixed filler[J]. International Journal of Adhesion and Adhesives, 48: 159(2014).
[68] WU H P, WU X J, GE M Y et al. Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives[J]. Composites Science and Technology, 67: 1116(2007).
[69] YIM M J, LI Y, MOON K S et al. Oxidation prevention and electrical property enhancement of copper-filled isotropically conductive adhesives[J]. Journal of Electronic Materials, 1342(2007).
[70] LIU Y X, WANG X D, GU Y X et al. Development of copper powder-added conductive adhesive[J]. China Adhesives, 27(2008).
[71] PENG Y H, YANG C H, CHEN K T et al. Study on synthesis of ultrafine Cu-Ag core-shell powders with high electrical conductivity[J]. Applied Surface Science, 263: 38(2012).
[73] FAN Y Q, GU Y W, XIA X Y. Preparation and properties of fibrous copper powder conductive filler[J]. Electronic Components & Materials, 25(2014).
[74] WANG J H, MIN H L. Research on nickel powder conductive acrylate pressure sensitive adhesive[J]. Insulating Materials, 5): 4(2006).
[78] WU H P, WU X J, LIU J F et al. Properties of carbon nanotube- filled isotropic conductive adhesives[J]. Acta Materiae Compositae Sinica, 9(2006).
[80] MA M Z, MA H R, ZENG J F, al. et[J]. Journal of Shihezi University (Natural Science), 12(2017).
[81] SU Y, DAI Y Q, LIAO B et al. Research progress of conductive filler for conductive adhesive[J]. China Adhesives, 52(2018).
[83] ZHANG W F[J]. Pressureless sintering of micrometer silver pastes for electrical connections and their properties(2019).
[84] ZUO X. Preparation and performance study of high thermal conductive adhesive[J]. China Adhesives, 47(2022).
[86] YANG J L, DONG C C, LUO J. Advances in low-temperature sintering of nanosilver in novel power module packages[J]. Materials Reports, 360(2019).
[88] HIROSHI N, TOMOAKJ H, TADASHI T. Effects of joining conditions on joint strength of Cu/Cu joint using Cu nanoparticle paste[J]. The Open Surface Science Journal, 3: 60(2011).
[89] HERRING C. Diffusional viscosity of a polycrystalline solid[J]. Journal of Applied Physics, 4375(1950).
[95] BHOGARAJU S K, CONTI F, KOTADIA H R et al. Novel approach to copper sintering using surface enhanced brass micro flakes for microelectronics packaging[J]. Journal of Alloys and Compounds, 844: 156043(2020).
[96] GAO Y, LI W L, CHEN C T et al. Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere[J]. Materials and Design, 160: 1265(2018).
[100] XIANG D L, HIROSHI N. Improved joint strength with sintering bonding using microscale Cu particles by an oxidation-reduction process[J]. IEEE 66th Electronic Components and Technology Conference, Las Vegas, USA.
[104] LIU J D, CHEN H T, JI H J et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 33289(2016).
[105] PA X, ZHOU J C, ZHANG J G et al. Study on preparation and application of nano-copper powder for power semiconductor device packaging[J]. China International Forum on Solid State Lighting & International Forum on Wide Bandgap Semiconductors China, Shenzhen.
[106] KOBAYASHI Y, SHIROCHI T, YASUDA Y et al. A metal-metal bonding process using metallic copper nanoparticles prepared in aqueous solution[J]. International Journal of Adhesion & Adhesives, 114(2014).
[112] YANG Z, SADIE C S, MARK G et al. High bond strength Cu joints fabricated by rapid and pressureless
[114] MOU Y, CHENG H, PENG Y et al. Fabrication of reliable Cu-Cu joints by low temperature bonding isopropanol stabilized Cu nanoparticles in air.[J]. Materials Letters, 229: 353(2018).
[115] MOU Y, PENG Y, ZHANG Y et al. Cu-Cu bonding enhancement at low temperature by using carboxylic acid surface-modified Cu nanoparticles[J]. Materials Letters, 227: 179(2018).
Get Citation
Copy Citation Text
Xin KE, Bingqing XIE, Zhong WANG, Jingguo ZHANG, Jianwei WANG, Zhanrong LI, Huijun HE, Limin WANG.
Category:
Received: Aug. 1, 2023
Accepted: --
Published Online: Mar. 28, 2024
The Author Email: Zhong WANG (wzwz99@126.com)