Infrared and Laser Engineering, Volume. 51, Issue 7, 20220065(2022)
Recent advances in two-dimensional materials in infrared photodetectors (invited)
[1] Yuan Liu, Xidong Duan, Hyeon-Jin Shin, et al. Promises and prospects of two-dimensional transistors. Nature, 591, 43-53(2021).
[2] Chunsen Liu, Huawei Chen, Shuiyuan Wang, et al. Two-dimensional materials for next-generation computing technologies. Nature Nanotechnology, 15, 545-557(2020).
[3] Deji Akinwande, Cedric Huyghebaert, Ching-Hua Wang, et al. Graphene and two-dimensional materials for silicon technology. Nature, 573, 507-518(2019).
[4] Yuan Liu, Yu Huang, Xiangfeng Duan, et al. Van der Waals integration before and beyond two-dimensional materials. Nature, 567, 323-333(2019).
[5] Andrea Splendiani, Liang Sun, Yuanbo Zhang, et al. Emerging photoluminescence in monolayer MoS2. Nano Letters, 10, 1271-1275(2010).
[6] Kin Fai Mak, Changgu Lee, James Hone, et al. Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 105, 136805(2010).
[7] Marco Bernardi, Maurizia Palummo, Jeffrey C Grossman. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Letters, 13, 3664-3670(2013).
[8] L Britnell, R M Ribeiro, A Eckmann, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 340, 1311-4(2013).
[9] Yilei Li, Alexey Chernikov, Xian Zhang, et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Physical Review B, 90, 205422(2014).
[10] Deep Jariwala, Artur R Davoyan, Giulia Tagliabue, et al. Near-unity absorption in van der waals semiconductors for ultrathin optoelectronics. Nano Letters, 16, 5482-5487(2016).
[11] Hualing Zeng, Junfeng Dai, Wang Yao, et al. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 7, 490-493(2012).
[12] Kin Fai Mak, Keliang He, Jie Shan, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 7, 494-498(2012).
[13] S B Desai, S R Madhvapathy, A B Sachid, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 354, 99-102(2016).
[14] Pin-Chun Shen, Cong Su, Yuxuan Lin, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 593, 211-217(2021).
[15] Deji Akinwande. Petrone nicholas and hone james two-dimensional flexible nanoelectronics. Nature Communications, 5, 5678(2014).
[16] Jiandong Yao, Guowei Yang. 2D group 6 transition metal dichalcogenides toward wearable electronics and optoelectronics. Journal of Applied Physics, 127, 030902(2020).
[17] Sa Cai, Xiaojie Xu, Wei Yang, et al. Materials and designs for wearable photodetectors. Advanced Materials, 31, 1808138(2019).
[18] Gerasimos Konstantatos. Current status and technological prospect of photodetectors based on two-dimensional materials. Nature Communications, 9, 5266(2018).
[19] Changyong Lan, Zhe Shi, Rui Cao, et al. 2D materials beyond graphene toward Si integrated infrared optoelectronic devices. Nanoscale, 12, 11784-11807(2020).
[20] F H L Koppens, T Mueller, Ph Avouris, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 9, 780-793(2014).
[21] Yanan Guo, Dong Liu, Chengcheng Miao, et al. Ambipolar transport in Ni-catalyzed InGaAs nanowire field-effect transistors for near-infrared photodetection. Nanotechnology, 32, 145203(2021).
[22] Zhaofeng Gao, Jiamin Sun, Mingming Han, et al. Recent advances in Sb-based III–V nanowires. Nanotechnology, 30, 212002(2019).
[23] Jiamin Sun, Mingming Han, Yu Gu, et al. Recent advances in group III–V nanowire infrared detectors. Advanced Optical Materials, 6, 1800256(2018).
[24] Yanan Guo, Dong Lu, Chengcheng Miao, et al. Recent advances in semiconductor nanowires infrared photodetectors (invited). Infrared and Laser Engineering, 50, 20211010(2021).
[25] A V Barve, S J Lee, S K Noh, et al. Review of current progress in quantum dot infrared photodetectors. Laser & Photonics Reviews, 4, 738-750(2010).
[26] Gerasimos Konstantatos, Michela Badioli, Louis Gaudreau, et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 7, 363-368(2012).
[27] Stijn Goossens, Gabriele Navickaite, Carles Monasterio, et al. Broadband image sensor array based on graphene–CMOS integration. Nature Photonics, 11, 366-371(2017).
[28] Yunfeng Chen, Yang Wang, Zhen Wang, et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics, 4, 357-363(2021).
[29] Ying Xie, Fei Liang, Dong Wang, et al. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Advanced Materials, 30, 1804858(2018).
[30] Zhongzheng Huang, Tianfu Zhang, Junku Liu, et al. Amorphous MoS2 photodetector with ultra-broadband response. ACS Applied Electronic Materials, 1, 1314-1321(2019).
[31] Haoyun Wang, Zexin Li, Dongyan Li, et al. Van der waals integration based on two-dimensional materials for high-performance infrared photodetectors. Advanced Functional Materials, 31, 2103106(2021).
[32] Jiangbin Wu, Nan Wang, Xiaodong Yan, et al. Emerging low-dimensional materials for mid-infrared detection. Nano Research, 14, 1863-1877(2021).
[33] Junru An, Bin Wang, Chang Shu, et al. Research development of 2D materials based photodetectors towards mid-infrared regime. Nano Select, 2, 527-540(2021).
[34] Yukihiro Takao, Hideo Asahina, Akira Morita. Electronic structure of black phosphorus in tight binding approach. Journal of the Physical Society of Japan, 50, 3362-3369(1981).
[35] Zehua Hu, Tianchao Niu, Rui Guo, et al. Two-dimensional black phosphorus: its fabrication, functionalization and applications. Nanoscale, 10, 21575-21603(2018).
[36] Likai Li, Yijun Yu, Guojun Ye, et al. Black phosphorus field-effect transistors. Nature Nanotechnology, 9, 372-377(2014).
[37] Xiaolong Chen, Xiaobo Lu, Bingchen Deng, et al. Widely tunable black phosphorus mid-infrared photodetector. Nature Communications, 8, 1672(2017).
[38] Bingchen Deng, V Tran, Yujun Xie, et al. Efficient electrical control of thin-film black phosphorus bandgap. Nature Communications, 8, 14474(2017).
[39] Hyungjin Kim, Shiekh Zia Uddin, Der-Hsien Lien, et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature, 596, 232-237(2021).
[40] Bilu Liu, Marianne Köpf, A N Abbas, et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Advanced Materials, 27, 4423-4429(2015).
[41] Matin Amani, Emma Regan, James Bullock, et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano, 11, 11724-11731(2017).
[42] Mingsheng Long, Anyuan Gao, Peng Wang, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv, 3, e1700589(2017).
[43] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7, 699-712(2012).
[44] Guibin Liu, Di Xiao, Yugui Yao, et al. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev, 44, 2643-63(2015).
[45] Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, et al. 2D transition metal dichalcogenides. Nature Reviews Materials, 2, 17033(2017).
[46] Feng Wang, Zhenxing Wang, Lei Yin, et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem Soc Rev, 47, 6296-6341(2018).
[47] Zhenhua Sun, Haixin Chang. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano, 8, 4133-4156(2014).
[48] Marco Bernardi, Can Ataca, Maurizia Palummo, et al. Optical and electronic properties of two-dimensional layered materials. Nanophotonics, 6, 479-493(2017).
[49] D Puotinen, R. E Newnham. The crystal structure of MoTe2. Acta Crystallographica, 14, 691-692(1961).
[50] Ignacio Gutiérrez Lezama, Ashish Arora, Alberto Ubaldini, et al. Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Letters, 15, 2336-2342(2015).
[51] Hai Huang, Jianlu Wang, Weida Hu, et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology, 27, 445201(2016).
[52] Jiawen You, Ye Yu, Kai Cai, et al. Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection. Nano Research, 13, 1636-1643(2020).
[53] G Y Guo, W Y Liang. The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2. Journal of Physics C: Solid State Physics, 19, 995-1008(1986).
[54] Xuechao Yu, Peng Yu, Di Wu, et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nature Communications, 9, 1545(2018).
[55] F Grønvold, E Røst. The crystal structure of PdSe2 and PdS2. Acta Crystallographica, 10, 329-331(1957).
[56] Wai Leong Chow, Peng Yu, Fucai Liu, et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Advanced Materials, 29, 1602969(2017).
[57] Akinola D Oyedele, Shize Yang, Liangbo Liang, et al. PdSe2: pentagonal two-dimensional layers with high air stability for electronics. Journal of the American Chemical Society, 139, 14090-14097(2017).
[58] George Zhang, Matin Amani, Apoorva Chaturvedi, et al. Optical and electrical properties of two-dimensional palladium diselenide. Applied Physics Letters, 114, 253102(2019).
[59] Qijie Liang, Qixing Wang, Qian Zhang, et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Advanced Materials, 31, 1807609(2019).
[60] Chun Hin Mak, Shenghuang Lin, Lukas Rogée, et al. Photoresponse of wafer-scale palladium diselenide films prepared by selenization method. Journal of Physics D: Applied Physics, 53, 065102(2019).
[61] Weiting Xu, Jiayang Jiang, Huifang Ma, et al. Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors. Nano Research, 13, 2091-2097(2020).
[62] Lisyuan Lu, Guanhao Chen, Huiyu Cheng, et al. Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano, 14, 4963-4972(2020).
[63] Yiyi Gu, Hui Cai, Jichen Dong, et al. Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Advanced Materials, 32, 1906238(2020).
[64] Hippel A Von. Structure and conductivity in the vib group of the periodic system. The Journal of Chemical Physics, 16, 372-380(1948).
[65] Ayodele Coker, Taesul Lee, T P Das. Investigation of the electronic properties of tellurium--energy-band structure. Physical Review B, 22, 2968-2975(1980).
[66] Yixiu Wang, Gang Qiu, Ruoxing Wang, et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nature Electronics, 1, 228-236(2018).
[67] Lei Tong, Xinyu Huang, Peng Wang, et al. Stable mid-infrared polarization imaging based on quasi-2 D tellurium at room temperature. Nature Communications, 11, 2308(2020).
[68] Meng Peng, Runzhang Xie, Zhen Wang, et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci Adv, 7, eabf7358(2021).
[69] Jinxiong Wu, Hongtao Yuan, Mengmeng Meng, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nature Nanotechnology, 12, 530-534(2017).
[70] Jianbo Yin, Zhenjun Tan, Hao Hong, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nature Communications, 9, 3311(2018).
[71] Jie Li, Zhenxing Wang, Yao Wen, et al. High-Performance Near-Infrared Photodetector Based on Ultrathin Bi2O2Se Nanosheets. Advanced Functional Materials, 28, 1706437(2018).
[72] Anyuan Gao, Jiawei Lai, Yaojia Wang, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nature Nanotechnology, 14, 217-222(2019).
[73] Steven Lukman, Lu Ding, Lei Xu, et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nature Nanotechnology, 15, 675-682(2020).
[74] P Ma, N Flöry, Y Salamin, et al. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths. ACS Photonics, 5, 1846-1852(2018).
[75] Nikolaus Flöry, Ping Ma, Yannick Salamin, et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nature Nanotechnology, 15, 118-124(2020).
[76] R Maiti, C Patil, M A S R Saadi, et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nature Photonics, 14, 578-584(2020).
[77] Jianghong Wu, Maoliang Wei, Jianglong Mu, et al. High-performance waveguide-integrated Bi2O2Se photodetector for Si photonic integrated circuits. ACS Nano, 15, 15982-15991(2021).
[78] Nathan Youngblood, Che Chen, S J Koester, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 9, 247-252(2015).
[79] Xiang Liu, Xiangbing Ji, Mingju Liu, et al. High-performance Ge quantum dot decorated graphene/zinc-oxide heterostructure infrared photodetector. ACS Appl Mater Interfaces, 7, 2452-2458(2015).
[80] Dominik Kufer, Ivan Nikitskiy, Tania Lasanta, et al. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Advanced Materials, 27, 176-180(2015).
[81] Jiajia Zha, Mingcheng Luo, Ming Ye, et al. Infrared photodetectors based on 2D materials and nanophotonics. Advanced Functional Materials, 32, 2111970(2022).
[82] Azar Nima Sefidmooye, James Bullock, Vivek Raj Shrestha, et al. Long-wave infrared photodetectors based on 2 D platinum diselenide atop optical cavity substrates. ACS Nano, 15, 6573-6581(2021).
Get Citation
Copy Citation Text
Xinyu Jia, Changyong Lan, Chun Li. Recent advances in two-dimensional materials in infrared photodetectors (invited)[J]. Infrared and Laser Engineering, 2022, 51(7): 20220065
Category: Special issue-Novel infrared detection technology driven by local field
Received: Jan. 21, 2022
Accepted: --
Published Online: Dec. 20, 2022
The Author Email: Changyong Lan (cylan@uestc.edu.cn)