Chinese Journal of Lasers, Volume. 42, Issue 5, 503006(2015)
Numerical Simulation of Temperature Field Evolution in the Process of Laser Metal Deposition
[1] [1] Xi Mingzhe, Gao Shiyou. Microstructures and mechanism of cracks forming of Rene80 high-temperature alloy fabricated by laser rapid forming process[J]. Chinese J Lasers, 2012, 39(8): 0803008.
[2] [2] Song Jianli, Li Yongtang, Deng Qilin, et al.. Research progress of laser cladding forming technology[J]. Journal of Mechnaical Engineering, 2010, 46(14): 29-39.
[3] [3] Wang F, Mao H, Zhang D. Online study of cracks during laser cladding process based on acoustic emission technique and finite element analysis[J]. Appl Surf Sci, 2008,255(5): 3267-3275.
[4] [4] Yu Chengxue, Jing Cainian, Li Huaixue. Forming mechanism and controlling method of laser cladding crack[J]. Aeronautical Manufacturing Technology, 2012, 4: 75-79.
[5] [5] Xu Dapeng, Zhou Jianzhong, Guo Huafeng. Investigation of generation mechanism and controlling method of cladding layer ranking by laser cladding[J]. Tool Engineering, 2007, 41(4): 24-28.
[6] [6] Yorikawa Morio, Matsuda Noriaki, Anbe Minoru. Thermal fatigue crack growth behaviors in a cylindrical specimen of nickel-base superalloys with a rapid temperature gradient in thickness[J]. Journal of the Society of Materials Science, Japan, 2005, 54(7): 761-766.
[7] [7] A F A Hoadley, M Rappaz. Heat-flow simulation of laser remelting with experimental validation[J]. Metallurgical Transactions B, 1991, 22(1): 101-109.
[8] [8] M Picasso, C F Marsden, J D Wagniere. (A) simple but realistic model for laser cladding[J]. Metallurgical Transactions B, 1994, 25(2): 281-291.
[9] [9] Huang Y L, Liang G Y, Su J Y. (A) comprehensive model of laser cladding by powder feeding[J]. Acta Metallurgica Sinica (English Letters), 2004, 17(1): 21-27.
[10] [10] Liu Hao, Yu Gang, He Xiuli, et al.. There-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J]. Chinese J Lasers, 2013, 40(12): 203007.
[11] [11] Hua Liang, Tian Wei, Liao Wenhe. Study of thermal-mechanical coupling behavior in laser cladding[J]. Laser & Optoelectronics Progress, 2014, 51(9): 091401.
[12] [12] Shao Y W, Yung C Shin. Modeling of transport phenomena during the coaxial laser direct deposition process[J]. Journal of Appl Phy, 2010, 108(4): 044908.
[13] [13] W Hofmeister, J Philliber, J Smugeresky. Investigation of solidification in the laser engineered net shaping process[J]. J Met, 1999, 51(7): 51-57.
[14] [14] Ye R, J Smugeresky, Zheng B. Numerical modeling of the thermal behavior during the LENS process[J]. Mater Sci Eng A, 2006, 428(1-2): 47-53.
[15] [15] L Costa, R Vilar, T Reti. Rapid tooling by laser powder deposition: process simulation using finite element analysis[J]. Acta Mater, 2005, 53(14): 3987-3999.
[16] [16] V Neela A De. Three- dimensional heat transfer analysis of LENSTM process using finite element method[J]. Int J Adv Manuf Technol, 2009, 45(9-10): 935-943.
[17] [17] Zuo Tiechuan. The Advanced Manufacturing in the 21st Century-Laser Technology and Engineering[M]. Science Press, 2007: 300-303.
[18] [18] L A Chapman, R Morrell, P N Quested. PAMRIC: Properties of alloys and moulds relevant to investment casting[J]. NPL REPORT MAT 9, 2008: 62-69.
Get Citation
Copy Citation Text
Zhang Dongyun, Wu Rui, Zhang Huifeng, Liu Zhen. Numerical Simulation of Temperature Field Evolution in the Process of Laser Metal Deposition[J]. Chinese Journal of Lasers, 2015, 42(5): 503006
Category: laser manufacturing
Received: Dec. 23, 2014
Accepted: --
Published Online: May. 6, 2015
The Author Email: Dongyun Zhang (zhangdy@bjut.edu.cn)