Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2442(2024)

Research Progress on Materials Design and Stability of Oxygen Electrode in Proton Ceramic Cells

ZHANG Xiaoyu1, MA Lili2, WANG Rui2, YANG Lei2, LIU Kui1, HUANG Zuzhi3, CHEN Ting1, and WANG Shaorong1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(67)

    [2] [2] LIU F, DING D, DUAN C C. Protonic ceramic electrochemical cells for synthesizing sustainable chemicals and fuels[J]. Adv Sci, 2023, 10(8): e2206478.

    [3] [3] DUAN C C, HUANG J, SULLIVAN N, et al. Proton-conducting oxides for energy conversion and storage[J]. Appl Phys Rev, 2020, 7(1): 011314.

    [4] [4] FABBRI E, MAGRASó A, PERGOLESI D. Low-temperature solid-oxide fuel cells based on proton-conducting electrolytes[J]. MRS Bull, 2014, 39(9): 792-797.

    [5] [5] HE F, SONG D, PENG R R, et al. Electrode performance and analysis of reversible solid oxide fuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.2O3-δ[J]. J Power Sources, 2010, 195(11): 3359-3364.

    [6] [6] LIM D K, IM H N, SINGH B, et al. Investigations on electrochemical performance of a proton-conducting ceramic-electrolyte fuel cell with La0.8Sr0.2MnO3 Cathode[J]. J Electrochem Soc, 2015, 162(6): F547-F554.

    [7] [7] SUN S C, CHENG Z. Electrochemical behaviors for Ag, LSCF and BSCF as oxygen electrodes for proton conducting IT-SOFC[J]. J Electrochem Soc, 2017, 164(10): F3104-F3113.

    [8] [8] HOU J, MIAO L N, HUI J N, et al. A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells[J]. J Mater Chem A, 2018, 6(22): 10411-10420.

    [9] [9] DUAN C C, TONG J H, SHANG M, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures[J]. Science, 2015, 349(6254): 1321-1326.

    [10] [10] XU X M, ZHONG Y J, SHAO Z P. Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis[J]. Trends Chem, 2019, 1(4): 410-424.

    [11] [11] WACHOWSKI S L, SZPUNAR I, S?RBY M H, et al. Structure and water uptake in BaLnCo2O6-δ (Ln=La, Pr, Nd, Sm, Gd, Tb and Dy)[J]. Acta Mater, 2020, 199: 297-310.

    [12] [12] LIU B, JIA L C, CHI B, et al. A novel PrBaCo2O5+σ- BaZr0.1Ce0.7Y0.1Yb0.1O3 composite cathode for proton-conducting solid oxide fuel cells[J]. Compos Part B Eng, 2020, 191: 107936.

    [13] [13] KIM J, SENGODAN S, KWON G, et al. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells[J]. ChemSusChem, 2014, 7(10): 2811-2815.

    [14] [14] ZHANG H, ZHOU Y C, PEI K, et al. An efficient and durable anode for ammonia protonic ceramic fuel cells[J]. Energy Environ Sci, 2022, 15(1): 287-295.

    [15] [15] DING P P, LI W L, ZHAO H W, et al. Review on Ruddlesden-Popper perovskites as cathode for solid oxide fuel cells[J]. J Phys Mater, 2021, 4(2): 022002.

    [16] [16] XU X M, SHAO Z P, JIANG S P. High-entropy materials for water electrolysis[J]. Energy Tech, 2022, 10(11): 2200573.

    [17] [17] LING Y H, HAN X, YANG Y, et al. Stable High-Entropy Double Perovskite Cathode SmBa(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)2O5+δ for Intermediate-Temperature Solid Oxide Fuel Cells[J]. J Chin Ceram Soc, 2022, 50(1): 219-225.

    [18] [18] PAPAC M, STEVANOVI? V, ZAKUTAYEV A, et al. Triple ionic-electronic conducting oxides for next-generation electrochemical devices[J]. Nat Mater, 2021, 20(3): 301-313.

    [19] [19] JIN F J, LING Y H. Performance of calcium doping in layered double perovskite as cathode material for solid oxide fuel cells[J]. J Chin Ceram Soc, 2023, 51(7): 1773-1782.

    [20] [20] ZHU K, YANG Y, HUAN D M, et al. Theoretical and experimental investigations on K-doped SrCo0.9Nb0.1O3-δ as a promising cathode for proton-conducting solid oxide fuel cells[J]. ChemSusChem, 2021, 14(18): 3876-3886.

    [21] [21] WANG Z, LV P F, YANG L, et al. Ba0.95La0.05Fe0.8Zn0.2O3-δ cobalt-free perovskite as a triple-conducting cathode for proton-conducting solid oxide fuel cells[J]. Ceram Int, 2020, 46(11): 18216-18223.

    [22] [22] JING J M, LEI Z, WU Z, et al. Ba0.95La0.05Fe0.8Ni0.2O3-δ perovskite as efficient cathode electrocatalysts for proton-conducting solid oxide fuel cells[J]. J Eur Ceram Soc, 2022, 42(14): 6566-6573.

    [23] [23] WANG Z, WANG Y H, WANG J, et al. Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes[J]. Nat Catal, 2022, 5: 777-787.

    [24] [24] ZOHOURIAN R, MERKLE R, RAIMONDI G, et al. Mixed- conducting perovskites as cathode materials for protonic ceramic fuel cells: Understanding the trends in proton uptake[J]. Adv Funct Mater, 2018, 28(35): 1801241.

    [25] [25] ZHANG Z B, ZHU Y L, ZHONG Y J, et al. Anion doping: A new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells[J]. Adv Energy Mater, 2017, 7(17): 1700242.

    [26] [26] WANG H R, LEI Z, JING J M, et al. Evaluation of NdBaCo2O5+δ oxygen electrode combined with negative expansion material for reversible solid oxide cells[J]. J Eur Ceram Soc, 2022, 42(10): 4259-4265.

    [27] [27] YI Y N, RAN R, WANG W, et al. Perovskite-based nanocomposites as high-performance air electrodes for protonic ceramic cells[J]. Curr Opin Green Sustain Chem, 2022, 38: 100711.

    [28] [28] NIU Y H, ZHOU Y C, ZHANG W L, et al. Highly active and durable air electrodes for reversible protonic ceramic electrochemical cells enabled by an efficient bifunctional catalyst[J]. Adv Energy Mater, 2022, 12(12): 2103783.

    [29] [29] SONG Y F, CHEN Y B, WANG W, et al. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode[J]. Joule, 2019, 3(11): 2842-2853.

    [30] [30] ZHAO Z Y, CUI J, ZOU M D, et al. Novel twin-perovskite nanocomposite of Ba-Ce-Fe-Co-O as a promising triple conducting cathode material for protonic ceramic fuel cells[J]. J Power Sources, 450: 866-875.

    [31] [31] ZHOU C, WANG X X, LIU D L, et al. New strategy for boosting cathodic performance of protonic ceramic fuel cells through incorporating a superior hydronation second phase[J]. Energy Environ Materials, 2023: 12660.

    [32] [32] KIM J H, HONG J, LIM D K, et al. Water as a hole-predatory instrument to create metal nanoparticles on triple-conducting oxides[J]. Energy Environ Sci, 2022, 15(3): 1097-1105.

    [33] [33] XU K, ZHANG H, XU Y S, et al. An efficient steam-induced heterostructured air electrode for protonic ceramic electrochemical cells[J]. Adv Funct Mater, 2022, 32(23): 2110998.

    [34] [34] ZHOU Y C, LIU E Z, CHEN Y, et al. An active and robust air electrode for reversible protonic ceramic electrochemical cells[J]. ACS Energy Lett, 2021: 1511-1520.

    [35] [35] SCHEFOLD J, BRISSE A, POEPKE H. 23 000 h steam electrolysis with an electrolyte supported solid oxide cell[J]. Int J Hydrog Energy, 2017, 42(19): 13415-13426.

    [36] [36] CHOI S, KUCHARCZYK C J, LIANG Y G, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells[J]. Nat Energy, 2018, 3: 202-210.

    [37] [37] LE L Q, HERNANDEZ C H, RODRIGUEZ M H, et al. Proton- conducting ceramic fuel cells: Scale up and stack integration[J]. J Power Sources, 2021, 482: 228868.

    [38] [38] LE L Q, MEISEL C, HERNANDEZ C H, et al. Performance degradation in proton-conducting ceramic fuel cell and electrolyzer stacks[J]. J Power Sources, 2022, 537: 231356.

    [39] [39] YANG S J, CHANG W, JEONG H J, et al. High-performance protonic ceramic fuel cells with electrode-electrolyte composite cathode functional layers[J]. Int J Energy Res, 2022, 46(5): 6553-6561.

    [40] [40] BIAN W J, WU W, WANG B M, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604(7906): 479-485.

    [41] [41] ZHANG Y, CHEN B, GUAN D Q, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591(7849): 246-251.

    [42] [42] CHOI M, KIM S J, LEE W. Effects of water atmosphere on chemical degradation of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ electrodes[J]. Ceram Int, 2020, 47(6): 7790-7797.

    [43] [43] PAN J X, YE Y J, ZHOU M Z, et al. Revealing the impact of steam concentration on the activity and stability of double-perovskite air electrodes for proton-conducting electrolysis cells[J]. Energy Fuels, 2022, 36(19): 12253-12260.

    [44] [44] BAUSá N, SOLíS C, STRANDBAKKE R, et al. Development of composite steam electrodes for electrolyzers based on Barium zirconate[J]. Solid State Ion, 2017, 306: 62-68.

    [45] [45] DUAN C C, KEE R, ZHU H Y, et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production[J]. Nat Energy, 2019, 4: 230-240.

    [46] [46] SHARMA V, MAHAPATRA M K, KRISHNAN S, et al. Effects of moisture on (La, A)MnO3 (A=Ca, Sr, and Ba) solid oxide fuel cell cathodes: A first-principles and experimental study[J]. J Mater Chem A, 2016, 4(15): 5605-5615.

    [47] [47] V?LLESTAD E, STRANDBAKKE R, TARACH M, et al. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers[J]. Nat Mater, 2019, 18(7): 752-759.

    [48] [48] SHIN J S, PARK H, PARK K, et al. Activity of layered swedenborgite structured Y0.8Er0.2BaCo3.2Ga0.8O7+δ for oxygen electrode reactions in at intermediate temperature reversible ceramic cells[J]. J Mater Chem A, 2021, 9(1): 607-621.

    [49] [49] HE F, ZHOU Y C, HU T, et al. An efficient high-entropy perovskite-type air electrode for reversible oxygen reduction and water splitting in protonic ceramic cells[J]. Adv Mater, 2023, 35(16): e2209469.

    [50] [50] YANG S J, WEN Y B, ZHANG J C, et al. Electrochemical performance and stability of cobalt-free Ln1.2Sr0.8NiO4 (Ln=La and Pr) air electrodes for proton-conducting reversible solid oxide cells[J]. Electrochim Acta, 2018, 267: 269-277.

    [51] [51] DANILOV N, LYAGAEVA J, VDOVIN G, et al. Electricity/hydrogen conversion by the means of a protonic ceramic electrolysis cell with Nd2NiO4+δ-based oxygen electrode[J]. Energy Convers Manag, 2018, 172: 129-137.

    [52] [52] LI W Y, GUAN B, MA L, et al. High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell[J]. J Mater Chem A, 2018, 6(37): 18057-18066.

    [53] [53] TANG W, DING H P, BIAN W J, et al. An unbalanced battle in excellence: Revealing effect of Ni/co occupancy on water splitting and oxygen reduction reactions in triple-conducting oxides for protonic ceramic electrochemical cells[J]. Small, 2022, 18(30): e2201953.

    [54] [54] ZHOU Y C, ZHANG W L, KANE N, et al. An efficient bifunctional air electrode for reversible protonic ceramic electrochemical cells[J]. Adv Funct Mater, 2021, 31(40): 2105386.

    [55] [55] LIANG M Z, WANG Y H, SONG Y F, et al. High-temperature water oxidation activity of a perovskite-based nanocomposite towards application as air electrode in reversible protonic ceramic cells[J]. Appl Catal B Environ, 2023, 331: 122682.

    [56] [56] ZHAO Z, LIU L, ZHANG X M, et al. High- and low- temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode operating under CO2/H2O- containing atmosphere[J]. Int J Hydrog Energy, 2013, 38(35): 15361-15370.

    [57] [57] DUAN C C, HOOK D, CHEN Y C, et al. Zr and Y Co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 ℃[J]. Energy Environ Sci, 2017, 10(1): 176-182.

    [58] [58] WEI Z L, LI Z B, WANG Z H, et al. A free-cobalt Barium ferrite cathode with improved resistance against CO2 and water vapor for protonic ceramic fuel cells[J]. Int J Hydrog Energy, 2022, 47(27): 13490-13501.

    [59] [59] LV X Q, CHEN H L, ZHOU W, et al. SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells[J]. Renew Energy, 2022, 185: 8-16.

    [60] [60] SOZAL M S I, TANG W, DAS S, et al. Electrical, thermal, and H2O and CO2 poisoning behaviors of PrNi0.5Co0.5O3-δ electrode for intermediate temperature protonic ceramic electrochemical cells[J]. Int J Hydrog Energy, 2022, 47(51): 21817-21827.

    [61] [61] XU Y S, XU X, BI L. A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells[J]. J Adv Ceram, 2022, 11(5): 794-804.

    [62] [62] HILPERT K, DAS D, MILLER M, et al. Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes[J]. J Electrochem Soc, 1996, 143(11): 3642-3647.

    [63] [63] CHEN K F, AI N, O’DONNELL K M, et al. Highly chromium contaminant tolerant BaO infiltrated La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for solid oxide fuel cells[J]. Phys Chem Chem Phys, 2015, 17(7): 4870-4874.

    [64] [64] ZHEN Y D, TOK A I Y, JIANG S P, et al. La(Ni, Fe)O3 as a cathode material with high tolerance to chromium poisoning for solid oxide fuel cells[J]. J Power Sources, 2007, 170(1): 61-66.

    [65] [65] HORITA T. Chromium poisoning for prolonged lifetime of electrodes in solid oxide fuel cells-Review[J]. Ceram Int, 2021, 47(6): 7293-7306.

    [66] [66] FU M Y, JIN Y M, LI D, et al. Effect of Gd0.2Ce0.8O1.9 Immersion on Chromium Poisoning Behavior of La0.8Sr0.2Co0.2Fe0.8O3-δ Cathode of Solid Oxide Fuel Cells[J]. J Ceram, 2022, 43(1): 54-61.

    [67] [67] LI J, LI J, YAN D, et al. Promoted Cr-poisoning tolerance of La2NiO4+δ-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode for intermediate temperature solid oxide fuel cells[J]. Electrochim Acta, 2018, 270: 294-301.

    [68] [68] ZHANG H, XU K, HE F, et al. Surface regulating of a double-perovskite electrode for protonic ceramic fuel cells to enhance oxygen reduction activity and contaminants poisoning tolerance[J].Adv Energy Mater, 2022, 12(26): 2200761.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Xiaoyu, MA Lili, WANG Rui, YANG Lei, LIU Kui, HUANG Zuzhi, CHEN Ting, WANG Shaorong. Research Progress on Materials Design and Stability of Oxygen Electrode in Proton Ceramic Cells[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2442

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 31, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: WANG Shaorong (srwang@cumt.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230839

    Topics