Chinese Journal of Lasers, Volume. 39, Issue 2, 202009(2012)
Passively Q-Switched Nd:YAG Microchip Laser Based on Graphene
[1] [1] K. S. Novoselov, A. K. Geim, S. V. Morozov et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666~669
[2] [2] F. Bonaccorso, Z. Sun, T. Hasan et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4: 611~622
[3] [3] Amos Martinez, Kazuyuki Fuse, Bo Xu et al.. Optical deposition of graphene ande carbon nanotubes in afiber ferrule for passive mode-locked lasing[J]. Opt. Express, 2010, 18(22): 23054~23061
[4] [4] Wang Shuxiang, Chen Yunlin. Survey of microchip lasers[J]. Chinese Journal of Quantum Electronics, 2007, 24(4): 401~406
[5] [5] Liu Lei, Zhang Dayong. A tightly coupled diode pumped micro laser with passive Q-switch[J]. Laser & Infrared, 2010, 40(6): 609~612
[6] [6] D. Nodop, J. Limpert. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime[J]. Opt. Lett., 2007, 32(15): 2115~2117
[7] [7] Keun Soo Kim,Yue Zhao, Houk Jang et al.. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706~710
[8] [8] Sasha Stankovich, Dmitriy A. Dikin, Richard D. Piner et al.. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558~1565
[9] [9] Claire Berger, Song Zhimin, Walt A. de Heer et al.. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J. Phys. Chem. B, 2004, 108(52): 19912~19916
[10] [10] Xu Jinlong, Li Xianlei, Wu Yongzhong et al.. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser[J]. Opt. Lett., 2011, 36(10): 1948~1950
[11] [11] Li Xianlei, Xu Jinlong, Wu Yongzhong et al.. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser[J]. Opt. Express, 2011, 19(10): 9950~9955
[12] [12] Wang Qing, Wei Zhiyi, Lin Jingjing et al.. Few-layer graphene as saturable absorber for Q-switched laser at sub-MHz repetition rate[C]. Istanbul, Turkey. Advances in Optical Materials (AIOM). Opt. Soc. Am., 2011: AIThF3
[13] [13] Yu Haohai, Chen Xiufang, Zhang Huaijing et al.. Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide[J]. Acsnano, 2010, 4(12): 7582~7586
[14] [14] Yu Haohai, Chen Xiufang, Zhang Huaijin et al.. Graphene as a Q-switcher for neodymium-doped lutetium vanandate laser[J]. Appl. Phys. Express, 2011, 4(2): 022704
[15] [15] C. C. Lee, G. Acosta, S. Bunch et al.. Mode-Locking of an ErYbglass laser with single layer graphene[C]. Snowmass Village, CO. International Conference on Ultrafast Phenomena (UP), 2010: TuE29
[16] [16] Liu Jiang, Wei Rusheng, Xu Jia et al.. Passively mode-locked Yb-doped fiber laser with graphene epitaxially grown on 6H-SiC substrates[J]. Chinese J. Lasers, 2011, 38(8): 0802003
[17] [17] Liu Jiang, Wu Sida, Wang Ke et al.. Passively mode-locked and Q-switched Yb-doped fiber lasers with graphene-based saturable absorber[J]. Chinese J. Lasers, 2011, 38(8): 0802001
[18] [18] G. J. Spühler, R. Paschotta, R. Fluck et al.. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers[J]. Opt. Soc. Am., 1999, B-16: 376
Get Citation
Copy Citation Text
Cao Yi, Liu Jia, Liu Jiang, Wang Pu. Passively Q-Switched Nd:YAG Microchip Laser Based on Graphene[J]. Chinese Journal of Lasers, 2012, 39(2): 202009
Category: Laser physics
Received: Sep. 27, 2011
Accepted: --
Published Online: Jan. 6, 2012
The Author Email: Yi Cao (sdybcao@163.com)