Metrology & Measurement Technology, Volume. 45, Issue 1, 65(2025)

Research status and prospects of unsteady parameter testing techniques for pulse detonation enhanced engines

Longxi ZHENG, Zhen YANG, Dingding WANG, and Jie LU
Author Affiliations
  • Northwestern Polytechnical University, Xi'an71000, China
  • show less
    References(99)

    [1] YAN C J, FAN W. Principles and key technologies of pulse detonation engine(2005).

    [2] WANG B, XIE Q F, WEN H C et al. Research progress of detonation engines. Journal of Propulsion Technology, 42, 721-737(2021).

    [3] ZHENG L X, WANG Z W, HUANG X Q et al. Pulse detonation turbine engine technology(2019).

    [4] PEACE J T, LU F K. Detonation⁃to⁃shock wave transmission at a contact discontinuity. Shock Waves, 28, 981-992(2018).

    [5] BIRMAN V. Thermal effects on measurements of dynamic processes in composite structures using piezoelectric sensors. Smart Materials and Structures 5.4, 5, 379-385(1996).

    [6] GRAY J A T. Reduction in the run⁃up distance for the deflagration⁃to⁃detonation transition and applications to pulse detonation combustion(2018).

    [7] BARLIAN A A, PARK W T, MALLON J R et al. Review: semiconductor piezoresistance for microsystems. Proceedings of the IEEE, 97, 513-552(2009).

    [8] CARTER S, CHIVERS J et al. Selecting piezoresistive vs. piezoelectric pressure transducers. Kulite Semiconductor Products, 1-25(2016).

    [9] SETTLES G. Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. Applied Mechanics Reviews, 55, 76-77(2022).

    [10] HARGATHER M J, SETTLES G S. A comparison of three quantitative schlieren techniques. Optics & Lasers in Engineering, 50, 8-17(2012).

    [11] ALLGOOD D, GUTMARK E, MEYER T et al. Computational and experimental studies of pulse detonation engines(2003).

    [12] ELSINGA G E, OUDHEUSDEN B W, SCARANO F et al. Assessment and application of quantitative schlieren methods: calibrated color schlieren and background oriented schlieren. Experiments in Fluids, 36, 309-325(2004).

    [13] GLASER A, CALDWELL N, GUTMARK E. Performance measurements of a pulse detonation combustor array integrated with an axial flow turbine(2006).

    [14] OWENS Z C. Flowfield characterization and model development in detonation tubes(2008).

    [15] OPALSKI A, PAXSON D, WERNET M. Detonation driven ejector exhaust flow characterization using planar DPIV, 1-20(2005).

    [16] HAGHDOOST M R, EDGINGTON⁃MITCHELL D M, PASCHEREIT C O et al. Investigation of the exhaust flow of a pulse detonation combustor at different operating conditions based on high⁃speed schlieren and PIV, 1512-1537(2019).

    [17] HAGHDOOST M R, EDGINGTON⁃MITCHELL D, PASCHEREIT C O et al. High⁃speed schlieren and particle image velocimetry of the exhaust flow of a pulse detonation combustor. AIAA Journal, 58, 3527-3543(2020).

    [18] REZAY HAGHDOOST M, EDGINGTON⁃MITCHELL D, NADOLSKI M et al. Dynamic evolution of a transient supersonic trailing jet induced by a strong incident shock wave. Physical Review Fluids, 5(2020).

    [19] LIU P J, WANG Z X, YANG B et al. Research on gas velocity measurement method combining absorption spectroscopy and cross⁃correlation method. Spectroscopy and Spectral Analysis, 37, 532-536(2017).

    [20] MATTISON D W, BROPHY C M, SANDERS S T et al. Pulse detonation engine characterization and control using tunable diode⁃laser sensors. Journal of Propulsion and Power, 19, 568-572(2003).

    [21] LYLE K T, JEFFRIES J B, HANSON R K. Diode⁃laser sensor for air⁃mass flux 1: design and wind⁃tunnel validation. AIAA Journal, 45, 2204-2212(2007).

    [22] ROUSER K P, KING P I, SCHAUE F R et al. Time⁃accurate flow field and rotor speed measurements of a pulsed detonation driven turbine, 7749-7764(2011).

    [23] BONG C, LEE J W, SUN H J et al. TDLAS measurements of temperature and water vapor concentration in a flameless MILD combustor. Measurement Science and Technology, 32(2021).

    [24] MUNDAY D, GEORGE A S, DRISCOLL R et al. The design and validation of a pulse detonation engine facility with and without axial turbine integration(2013).

    [25] GEORGE A C S, DRISCOLL R, MUNDAY D E et al. Experimental comparison of axial turbine performance under pulsed⁃air and pulsed⁃detonation flows(2013).

    [26] AMBADY S, HOFER D C, TANGIRALA V E et al. Turbine efficiency for unsteady, periodic flows. Journal of Turbomachinery, 134, 1-6(2012).

    [27] XIONG C. Optical diagnostics and intake / exhaust system research of APDE(2009).

    [28] HUANG X Q, YAN C J, FAN W et al. Exploratory experimental study on the combustion efficiency of pulse detonation. Journal of Aerospace Power, 962-966(2006).

    [29] JENKINS T P, HANSON R K. A soot temperature diagnostic combining flame emission and modulated laser absorption(2000).

    [30] JENKINS T P, HANSON R K. Soot diagnostic for pulse detonation engine studies(2000).

    [31] YANG S R, ZHAO J R et al. Multiplex CARS measurements in supersonic H2 / air combustion. Applied Physics B: Lasers and Optics, 68, 257-265(1999).

    [32] MAGRE P, COLLIN G et al. Temperature measurements by CARS and intrusive probe in an air⁃hydrogen supersonic combustion. International Journal of Heat and Mass Transfer, 44, 4095-4105(2001).

    [33] MAGRE P, BOUCHARDY P. Nitrogen and hydrogen coherent anti‐stokes raman scattering thermometry in a supersonic reactive mixing layer. Proceedings of the Combustion Institute, 28, 697-703(2000).

    [34] CUTLER A D, MAGNOTTI G, CANTU L et al. Dual pump coherent anti‐stokes Raman spectroscopy measurements in a dual‐mode scramjet. Journal of Propulsion and Power, 30, 539-549(2014).

    [35] CUTLER A D, GALLO E C A, CANTU L M L. Coherent anti‐Stokes Raman spectroscopy measurement of ethylene in combustion. Applied Optics, 56, 30-36(2017).

    [36] KIM A, DEDIC C E, CUTLER A D. Development of a fs / ps CARS system for temperature and species measurements in a dual⁃mode scramjet combustor(2023).

    [37] SPEARRIN R M, GOLDENSTEIN C S, SCHULTA I A et al. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy. Applied Physics B, 117, 689-698(2014).

    [38] BOECK L R, MÉVEL R, FIALA T et al. High⁃speed OH PLIF imaging of deflagration⁃to⁃detonation transition in H2⁃air mixtures. Experiments in Fluids, 57, 105-118(2016).

    [39] BOECK L R, BERGER F M, HASSLBERGER J et al. Detonation propagation in hydrogen⁃air mixtures with transverse concentration gradients. Shock Waves, 26, 181-192(2016).

    [40] YANG B, QI Z M, YANG H N et al. Velocity measurement method based on TDLAS for combustion flow. Journal of Combustion Science and Technology, 21, 516-520(2015).

    [41] BONG C, LEE J, SUN H et al. TDLAS measurements of temperature and water vapor concentration in a flameless MILD combustor. Measurement Science and Technology, 32(2021).

    [42] HARGATHER M J, SETTLES G S. A comparison of three quantitative schlieren techniques. Optics & Lasers in Engineering, 50, 8-17(2012).

    [43] SANDERS S T, MATTISON D W, MA L et al. Wavelength agile diode⁃laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium⁃seeded pulse detonation. Optics Express, 10, 505-514(2002).

    [44] ROUSER K P, KING P I, SCHAUER F R et al. Time resolved flow properties in a turbine driven by pulsed detonations. Journal of Propulsion and Power, 30, 1528-1536(2014).

    [45] CHEN F, TAO B, HUANG B et al. Measurement of PDRE plume based on TDLAS technology. Journal of Combustion Science and Technology, 19, 501-506(2013).

    [46] WU Z, LI J F, LU J et al. Temperature measurement of burning gas in pulse detonation engine based on TDLAS. Journal of Combustion Science and Technology, 30, 411-418(2024).

    [47] ROUSER K P, KING P I, SCHAUER F R et al. Unsteady performance of a turbine driven by a pulse detonation engine, 13077-13092(2010).

    [48] SURESH A, HOFER D C, TANGIRALA V E. Turbine efficiency for unsteady, periodic flows(2012).

    [49] GLASER A, CALDWELL N, GUTMARK E. Performance of an axial flow turbine driven by multiple pulse detonation combustors(2007).

    [50] CALDWELL N, GUTMARK E. Performance analysis of a hybrid pulse detonation combustor / gas turbine system, 3646-3655(2008).

    [51] ROUSER K, KING P, SCHAUER F et al. Unsteady performance of a turbine driven by a pulse detonation engine(2010).

    [52] HOFER D C, TANGIRALA V E, SURESH A. Turbine efficiency for unsteady, periodic flows. Journal of Turbomachinery(2012).

    [53] GLASER A, CALDWELL N, GUTMARK E. Performance of an axial flow turbine driven by multiple pulse detonation combustors(2007).

    [54] NICHOLLS J A, WILKINSON H R, MORRISON R B. Intermittent detonation as a thrust⁃producing mechanism. Journal of Jet Propulsion, 27, 534-541(1954).

    [55] TAKEUCHI S, KASAHARA J et al. Net impulse measurements of pulse detonation tube by using fuel⁃air mixture(2010).

    [56] KASAHARA J, ARAI T, MATSUO A. Net impulse measurements of pulse detonation tube by using fuel⁃air mixture. AIAA Paper(2003).

    [57] COOPER M, JACKSON S, AUSTIN J et al. Direct experimental impulse measurements for detonations and deflagrations. Journal of Propulsion and Power, 18, 1033-1041(2002).

    [58] COOPER M, SHEPHERD J E. Effect of porous thrust surfaces on detonation transition and detonation tube impulse. Journal of Propulsion and Power, 20, 811-819(2004).

    [59] KIYANDA C B, TANGUAY V, HIGGINS A J et al. Effect of transient gas dynamic processes on the impulse of pulse detonation engines. Journal of Propulsion and Power, 18, 1124-1126(2002).

    [60] HINKEY J B, BUSSING T R A, KAYE L. Shock tube experiments for the development of a hydrogen⁃fueled pulse detonation engine(1995).

    [61] FAN W, YAN C J, HUANG X Q et al. Experimental investigation on two⁃phase pulse detonation engine. Combustion and Flame, 133, 441-450(2003).

    [62] STANLEY S, BURGE K, WILSON D. Experimental investigation of pulse detonation wave phenomenon as related to propulsion application(1995).

    [63] ZHANG F Y, FUJIWARA T, MIYASAKA T, al et. Detonation studies of high⁃frequency⁃operation pulse detonation engine with air / hydrogen, 1-7(2003).

    [64] AARNIO M J, HINKEY J B, BUSSING T R A. Multiple cycle detonation experiments during the development of a pulse detonation engine(1996).

    [65] HINKEY J, WILLIAMS J, HENDERSON S et al. Rotary⁃valved, multiple⁃cycle, pulse detonation engine experimental demonstration(1997).

    [66] RASHEED A, TANGIRALA V E, PINARD P F et al. Experimental and numerical investigations of ejectors for PDE applications, 1-9(2003).

    [67] SHEHADEH R, SARETTO S, LEE S Y et al. Thrust augmentation measurements for a pulse detonation engine driven ejector, 1-9(2004).

    [68] WILSON J, SGONDEA A, PAXSON D E et al. Parametric investigation of thrust augmentation by ejectors on a pulsed detonation tube. Journal of Propulsion and Power, 23, 108-115(2007).

    [69] ALLGOOD D, GUTMARK E, HOKE J et al. Performance measurements of multicycle pulse⁃detonation⁃engine exhaust nozzles. Journal of Propulsion and Power, 22, 70-77(2006).

    [70] GLASER A, BRUMBERG J, RASHEED A et al. Investigations of thrust generated by a valved, multitube PDE with exit nozzles, 1-14(2008).

    [71] KASAHARA J, HIRANO M, MATSUO A et al. Thrust measurement of a multicycle partially filled pulse detonation rocket engine. Journal of Propulsion and Power, 25, 1281-1290(2009).

    [72] MATSUOKA K, ESUMI M, IKEGUCHI K B et al. Optical and thrust measurement of a pulse detonation combustor with a coaxial rotary valve. Combustion and Flame, 159, 1321-1338(2012).

    [73] NGUYEN N, CUTLER A D. Pressure and thrust measurements of a high⁃frequency pulsed⁃detonation tube, 1930-1940(2008).

    [74] HINKEY J, HENDERSON S, BUSSING T. Operation of a flight⁃scale rotary⁃valved, multiple⁃combustor, pulse detonation engine (RVMPDE)(1998).

    [75] SCHAUER F, STUTRUD J, BRADLEY R. Detonation initiation studies and performance results for pulsed detonation engine applications(2001).

    [76] KASAHARA J, HASEGAWA A, NEMOTO T et al. Thrust demonstration of a pulse detonation rocket "TODOROKI", 54-67(2007).

    [77] TAKAGI S, MOROZUMI T, MATSUOKA K et al. Study on pulse detonation rocket engine using flight test demonstrator "TODOROKI II"(2014).

    [78] LI J L, FAN W, CHEN W et al. Propulsive performance of a liquid kerosene / oxygen pulse detonation rocket engine. Experimental Thermal and Fluid Science, 35, 265-271(2011).

    [79] STRONGE W J. Impact mechanics(2004).

    [80] CARBONARO M. Aerodynamic force measurements in the VKI longshot hypersonic facility. New trends in instrumentation for hypersonic research, 317-325(1993).

    [81] STORKMANN V, OLIVIER H, GRONIG H. Force measurements in hypersonic impulse facilities. AIAA Journal, 36, 342-348(1998).

    [82] BERNSTEIN L P R C. Force Measurements in short⁃duration hypersonic facilities(1975).

    [83] NAUMANN K W, ENDE H, MATHIEU G. Technique for aerodynamic force measurement within milliseconds in shock tunnel. Shock Waves, 1, 223-232(1991).

    [84] TANNO H, KODERA M, KOMURO T et al. Aerodynamic force measurement on a large⁃scale model in a short duration test facility. Review of Scientific Instruments, 76(2005).

    [85] TANNO H, KOMURO T, TAKAHASHI M et al. Unsteady force measurement technique in shock tubes. Review of Scientific Instruments, 75, 532-536(2004).

    [86] MEE D J. Dynamic calibration of force balances for impulse hypersonic facilities. Shock Waves, 12, 443-455(2003).

    [87] JOARDER R, JAGADEESH G. A new free floating accelerometer balance system for force measurements in shock tunnels. Shock Waves, 13, 409-412(2003).

    [88] SANDERSON S R, SIMMONS J M. Drag balance for hypervelocity impulse facilities. AIAA Journal, 29, 2185-2191(1991).

    [89] JOSHI M V, REDDY N M. Aerodynamic force measurements over missile configurations in IISc shock tunnel at M ∞=5.5. Experiments in Fluids, 4, 338-340(1986).

    [90] SAHOO N, MAHAPATRA D R, JAGADEESH G et al. An accelerometer balance system for measurement of aerodynamic force coefficients over blunt bodies in a hypersonic shock tunnel. Measurement Science and Technology, 14, 260-272(2003).

    [91] SATHEESH K, JAGADEESH G. Analysis of an internally mountable accelerometer balance system for use with non⁃isotropic models in shock tunnels. Measurements, 42, 856-862(2009).

    [92] ROBINSON M, SCHRAMM J M, SCHRAMM K. An investigation into internal and external force balance configurations for short duration wind tunnels(2008).

    [93] ROBINSON M J, MEE D J, PAULL A. Scramjet lift, thrust and pitching⁃moment characteristics measured in a shock tunnel. Journal of Propulsion and Power, 22, 85-95(2006).

    [94] DANIEL W J T, MEE D J. Finite element modelling of a three⁃component force balance for hypersonic flows. Computers and Structures, 54, 35-48(1995).

    [95] COOPER M, SHEPHERD J E. The effects of nozzles and extensions on detonation tube performance(2002).

    [96] SMITH A L, MEE D J, DANIEL W J T et al. Design,modelling and analysis of a six component force balance for hypervelocity wind tunnel testing. Computers and Structures, 79, 1077-1088(2001).

    [97] ABDEL⁃JAWAD M M, MEE D J, MORGAN R G. New calibration technique for multiple⁃component stress wave force balances. Review of Scientific Instruments, 78(2007).

    [98] JOSHI D D. Unsteady thrust measurement techniques for pulse detonation engines(2014).

    [99] JOSHI D D, LU F K. Unsteady thrust measurement for pulse detonation engines. Journal of Propulsion and Power, 32, 225-236(2016).

    Tools

    Get Citation

    Copy Citation Text

    Longxi ZHENG, Zhen YANG, Dingding WANG, Jie LU. Research status and prospects of unsteady parameter testing techniques for pulse detonation enhanced engines[J]. Metrology & Measurement Technology, 2025, 45(1): 65

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Survey and Review

    Received: Dec. 10, 2024

    Accepted: --

    Published Online: Jul. 23, 2025

    The Author Email:

    DOI:10.11823/j.issn.1674-5795.2025.01.04

    Topics