The Journal of Light Scattering, Volume. 35, Issue 4, 407(2023)
Surface-enhanced Fluorescence Properties of Monolayer Molybdenum Disulfide and Silver Nanoparticle Array Hybrid Structure
[1] [1] Novoselov K S, Geim A K, Morozov S V,et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666–669.
[2] [2] Geim A K. Graphene: status and prospects [J]. Science, 2009, 324(5934):1530–1534.
[3] [3] Novoselov A K S, Fal’ko V I,Colombo L, et al. A roadmap for grapheme [J]. Nature 2012, 490(7419): 192–200.
[4] [4] Frank I W, Tanenbaum D M, Zande A M,et al. Mechanical properties of suspended graphene sheets [J]. J Vac Sci Technol B, 2007, 25(6): 2558–2561.
[5] [5] Neto A H C,Guinea F, Peres N M R, et al. The electronic properties of graphene [J]. Rev Mod Phys, 2009, 81(1): 109–162.
[6] [6] Balandin A A. Thermal properties of graphene and nanostructured carbon materials [J]. Nat Mater, 2011, 10(8): 569–581.
[7] [7] Duong D L, Yun S J, Lee Y H. van derWaals layered materials: opportunities and challenges [J]. ACS Nano 2017, 11(12): 11803–11830.
[8] [8] Wang Q H, Kalantar-Zadeh K, Kis A,et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nat Nanotechnol, 2012, 7(11): 699–712.
[9] [9] Zheng W, Jiang Y, Hu X,et al. Light emission properties of 2D transition metal dichalcogenides: fundamentals and applications [J]. Adv Opt Mater, 2018, 6(21): 1800420.
[10] [10] Maier S A. Plasmonics: Fundamentals and Applications [M].New York: springer, 2007.
[12] [12] Li X, Zhu J, Wei B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications [J]. Chem Soc Rev, 2016, 45(11): 3145–3187.
[13] [13] Li Y, Li Z, Chi C,et al. Plasmonics of 2d nanomaterials: Properties and applications [J]. Adv Sci, 2017, 4(8): 1600430.
[15] [15] Kern J, Trügler A, Niehues I, et al. Nanoantenna-enhanced light-matter interaction in atomically thin WS2 [J]. ACS Photon, 2015, 2(9): 1260–1265.
[16] [16] Butun S, Tongay S, Aydin K. Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays [J]. Nano Lett, 2015, 15(4): 2700–2704.
[17] [17] Chiang Y J, Lu T W, Huang P R, et al. MoS2 with stable photoluminescence enhancement under stretching via plasmonic surface lattice resonance [J]. Nanomaterials,2021, 11(7), 1698.
[18] [18] Lee B, Park J, Han G H,et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array [J]. Nano Letters, 2019, 15(5): 3646-3653.
[19] [19] Sun J, Hu H, Zheng D,et al. Light-emitting plexciton: Exploiting plasmon-exciton interaction in the intermediate coupling regime [J]. ACS Nano, 2018, 12(10): 10393–10402.
[20] [20] Ding S Y, Yi J, Li J F,et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials [J]. Nat Rev Mater, 2016, 1(6): 16021-16037.
[21] [21] Ford G W, Weber W H, Xie F, et al. Electromagnetic interactions of molecules with metalsurfaces [J]. Phy Rep, 1984, 113(4): 195-287.
[22] [22] Wang Z, Dong Z, Gu Y,et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures [J]. Nat Commun, 2016, 7: 11283.
[23] [23] Boulesbaa A, Babicheva V E, Cao L,et al. Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays [J]. ACS Photonics, 2019, 3(12): 2389-2395.
[25] [25] Lee H S, Kim M S, Jin Y, et al. Selective amplification of the primary exciton in a MoS2 monolayer [J]. Phys Rev Lett, 2015, 115(22): 226801.
[26] [26] Li H, Zhang X H, Cao L, et al. Temperature-dependent photoluminescence and time-resolved photoluminescence study of monolayer molybdenum disulfide [J]. Opt Mater, 2020, 107: 110150.
Get Citation
Copy Citation Text
LIU Xuan, LI Muhua, ZHAO Yan. Surface-enhanced Fluorescence Properties of Monolayer Molybdenum Disulfide and Silver Nanoparticle Array Hybrid Structure[J]. The Journal of Light Scattering, 2023, 35(4): 407
Received: Jul. 18, 2023
Accepted: --
Published Online: Jul. 23, 2024
The Author Email: