Journal of Atmospheric and Environmental Optics, Volume. 19, Issue 3, 265(2024)
Progress of detection technology of nitrogen dioxide and organic nitrates
[1] Kuang C L, Zeng L M, Chen S Y et al. The design and application of an online nitrogen dioxide analyzer based on cavity attenuated phase shift spectroscopy[J]. Acta Scientiae Circumstantiae, 40, 2970-2976(2020).
[2] Fuchs H, Dubé W P, Lerner B M et al. A sensitive and versatile detector for atmospheric NO2 and NOx based on blue diode laser cavity ring-down spectroscopy[J]. Environmental Science & Technology, 43, 7831-7836(2009).
[3] Piechocki-Minguy A, Plaisance H, Garcia-Fouqué S et al. Validation tests of a new high uptake rate passive sampler for nitrogen dioxide measurements[J]. Environmental Technology, 24, 1527-1535(2003).
[4] Al-Jalal A, Al-Basheer W, Gasmi K et al. Measurement of low concentrations of NO2 gas by differential optical absorption spectroscopy method[J]. Measurement, 146, 613-617(2019).
[5] Yang N. Heterogeneous Reactions of SO2, NO2 and Acetic Acid on the Surface of Typical Mineral Aerosol[D](2020).
[6] Simmons W A, Seakins P W. Estimations of primary nitrogen dioxide exhaust emissions from chemiluminescence NOx measurements in a UK road tunnel[J]. Science of the Total Environment, 438, 248-259(2012).
[7] Di Carlo P, Aruffo E, Busilacchio M et al. Aircraft based four-channel thermal dissociation laser induced fluorescence instrument for simultaneous measurements of NO2, total peroxy nitrate, total alkyl nitrate, and HNO3[J]. Atmospheric Measurement Techniques, 6, 971-980(2013).
[8] George L A, O'Brien R J. Prototype FAGE determination of NO2[J]. Journal of Atmospheric Chemistry, 12, 195-209(1991).
[9] Chen J. Detection of Atmospheric NOy by Cavity Ring-Down Spectroscopy[D](2017).
[10] Thornton J A, Wooldridge P J, Cohen R C. Atmospheric NO2: In situ laser-induced fluorescence detection at parts per trillion mixing ratios[J]. Analytical Chemistry, 72, 528-539(2000).
[11] Li C M, Wang H C, Chen X R et al. Thermal dissociation cavity-enhanced absorption spectrometer for detecting NO2, RO2NO2, and RONO2 in the atmosphere[J]. Atmospheric Measurement Techniques, 14, 4033-4051(2021).
[12] Paul D, Furgeson A, Osthoff H D. Measurements of total peroxy and alkyl nitrate abundances in laboratory-generated gas samples by thermal dissociation cavity ring-down spectroscopy[J]. Review of Scientific Instruments, 80, 114101(2009).
[13] Sadanaga Y, Takaji R, Ishiyama A et al. Thermal dissociation cavity attenuated phase shift spectroscopy for continuous measurement of total peroxy and organic nitrates in the clean atmosphere[J]. The Review of Scientific Instruments, 87, 074102(2016).
[14] Flocke F M, Weinheimer A J, Swanson A L et al. On the measurement of PANs by gas chromatography and electron capture detection[J]. Journal of Atmospheric Chemistry, 52, 19-43(2005).
[15] Day D A, Wooldridge P J, Dillon M B et al. A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3[J]. Journal of Geophysical Research: Atmospheres, 107, 4046(2002).
[18] Rothe K W, Brinkmann U, Walther H. Applications of tunable dye lasers to air pollution detection: Measurements of atmospheric NO2 concentrations by differential absorption[J]. Applied Physics, 3, 115-119(1974).
[19] Herbelin J M, McKay J A. Development of laser mirrors of very high reflectivity using the cavity-attenuated phase-shift method[J]. Applied Optics, 20, 3341-3344(1981).
[20] Osthoff H D, Brown S S, Ryerson T B et al. Measurement of atmospheric NO2 by pulsed cavity ring‐down spectroscopy[J]. Journal of Geophysical Research: Atmospheres, 111, 305(2006).
[21] Langridge J M, Ball S M, Jones R L M. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes[J]. The Analyst, 131, 916-922(2006).
[22] Li Y Q, Demerjian K L, Zahniser M S et al. Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system[J]. Journal of Geophysical Research: Atmospheres, 109, S08(2004).
[23] Matsumoto J, Hirokawa J, Akimoto H et al. Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique[J]. Atmospheric Environment, 35, 2803-2814(2001).
[24] Ge B Z, Wang Z F, Sun Y L et al. Comparison between cavity attenuated phase shift spectroscopy (CAPS) and chemiluminescence-based (CL) instrument in NO2 measurement in Beijing, China[J]. Environmental Chemistry, 33, 1558-1565(2014).
[25] Rollins A W, Smith J D, Wilson K R et al. Real time in situ detection of organic nitrates in atmospheric aerosols[J]. Environmental Science & Technology, 44, 5540-5545(2010).
[26] Slusher D L, Huey L G, Tanner D J et al. A thermal dissociation-chemical ionization mass spectrometry (TD-CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide[J]. Journal of Geophysical Research: Atmospheres, 109, 315(2004).
[27] Paul D, Osthoff H D. Absolute measurements of total peroxy nitrate mixing ratios by thermal dissociation blue diode laser cavity ring-down spectroscopy[J]. Analytical Chemistry, 82, 6695-6703(2010).
[28] Chen D S, Zhang L J, Bao J G. Comparative study on using chemiluminescence and DOAS to determine nitric oxides in environment[J]. Environmental Science & Technology, 30, 50-52(2007).
[29] Alam M S, Crilley L R, Lee J D et al. Interference from alkenes in chemiluminescent NOx measurements[J]. Atmospheric Measurement Techniques, 13, 5977-5991(2020).
[31] Wu F K, Liu Q, Wang Y S et al. A comparison research on observation of ambient NOx by different principle analyzers[J]. Chinese Journal of Environmental Engineering, 4, 865-869(2010).
[32] Ge B Z, Sun Y L, Liu Y et al. Nitrogen dioxide measurement by cavity attenuated phase shift spectroscopy (CAPS) and implications in ozone production efficiency and nitrate formation in Beijing, China[J]. Journal of Geophysical Research: Atmospheres, 118, 9499-9509(2013).
[33] Suzuki H, Miyao Y K, Nakayama T et al. Comparison of laser-induced fluorescence and chemiluminescence measurements of NO2 at an urban site[J]. Atmospheric Environment, 45, 6233-6240(2011).
[34] Fuchs H, Ball S M, Bohn B et al. Intercomparison of measurements of NO2 concentrations in the atmosphere simulation chamber SAPHIR during the NO3 Comp campaign[J]. Atmospheric Measurement Techniques, 3, 21-37(2010).
[35] Ma Y. The Determination of Tropospheric Nitrogen Oxides by Colorimetric Method and Chemiluminescence Method[D](2007).
[36] Saltzman B E. Colorimetric microdetermination of nitrogen dioxide in the atmosphere[J]. Analytical Chemistry, 26, 1949-1955(1954).
[37] Chen L T, Tong Y Q. Determination of nitrogen dioxide from ambient air by passive sampling[J]. Environmental Chemistry, 13, 460-465(1994).
[38] Wang Y P, Chen T, Wang J et al. Determination of nitrogen dioxide in ambient air-improved Saltzman method[J]. Environmental Monitoring in China, 10, 17-20(1994).
[39] Song X P. Analysis of influencing factors on determination of nitrogen oxides in the atmosphere by naphthyl ethylenediamine hydrochloride spectrophotometry[J]. China High-Tech Enterprises, 63-64(2008).
[40] Peng L. Method of determining the concentration of nitrogen dioxide in the atmosphere using N(1-naphthy1)-ethylenediamine dihydrochloride spectrophotometric method[J]. Chemical Engineer, 25, 31-32(2011).
[41] Sun M X. Evaluation of uncertainty of nitrogen dioxide detection in ambient air[J]. Guangzhou Chemical Industry, 41, 125-127(2013).
[42] Sun X L. How to avoid high blank value in the determination of nitrogen dioxide in ambient air[J]. Agricultural Development & Equipments, 32(2014).
[43] Hu Z J, Yu L, Dong L L. Determination of nitrogen oxides and sulfur dioxide in the air and causes analysis of air pollution.[J]. Coal and Chemical Industry, 39, 34-38(2016).
[44] Mou J, Ma Y, Yuan Y. Analysis of influencing factors on determination of nitrogen oxides in the atmosphere by naphthyl ethylenediamine hydrochloride method[J]. Low Carbon World, 18-19(2017).
[45] Hu Q X. Discussion on determination of nitrogen dioxide in the air of spectrophotometry[J]. Chemical Entreprise Management, 57-58(2017).
[46] Zhang L P, Pei X Y, Zhao C R. Uncertainty evaluation of nitrogen content in the air using N(1-naphthy1)-ethylenediamine dihydrochloride spectrophotometric method[J]. Environmental Science Survey, 39, 91-96(2020).
[47] Zhang X L, Song B J, Zhang Y J. Spectrophotometry of nitrogen dioxide in the air[J]. China Metrology, 83-84(2011).
[48] Platt U, Perner D. Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV[J]. Journal of Geophysical Research: Oceans, 85, 7453-7458(1980).
[49] Lin P P. Research on the Detection of Atmospheric NO2 Based on Differential Optical Absorption Spectroscopy Using LED as Optical Source[D](2016).
[50] Winer A M, Biermann H W. Long pathlength differential optical absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCNO in the California South Coast Air Basin[J]. Research on Chemical Intermediates, 20, 423-445(1994).
[51] Lee J, Kim K H, Kim Y J et al. Application of a long-path differential optical absorption spectrometer (LP-DOAS) on the measurements of NO2, SO2, O3, and HONO in Gwangju, Korea[J]. Journal of Environmental Management, 86, 750-759(2008).
[52] Kern C, Trick S, Rippel B et al. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements[J]. Applied Optics, 45, 2077-2088(2006).
[53] Ling L Y, Xie P H, Qin M et al. Research on the influence of etalon structures of LED on differential optical absorption spectroscopy system for measuring NO2 and its removing methods[J]. Acta Optica Sinica, 31, 1230003(2011).
[54] Ling L Y, Lin P P, Huang Y R et al. A long-path DOAS system using LED with stabilized spectrum as optical source for measuring atmospheric NO2[J]. Journal of Optoelectronics Laser, 26, 1712-1718(2015).
[55] Duan J, Qin M, Lu X et al. The detection of atmospheric HONO and NO2 with fiber coupling long-path differential optical absorption spectroscopy system[J]. Spectroscopy and Spectral Analysis, 36, 2001-2005(2016).
[56] Yang L, Li A, Xie P H et al. Telemetry research of NO2 concentration in the night based on LED and DOAS method[J]. Spectroscopy and Spectral Analysis, 39, 1398-1405(2019).
[57] Yu M, Nan X F, Li N et al. An air quality on-line continuous-monitoring system based on differential optical absorption spectroscopy[J]. Optical Instruments, 38, 262-266(2016).
[58] Zou J S, Wang F. Simultaneous measurement of SO2 and NO2 concentration using an optical fiber-based LP-DOAS system[J]. Chinese Optics Letters, 18, 32-37(2020).
[59] Manago N, Takara Y, Ando F et al. Visualizing spatial distribution of atmospheric nitrogen dioxide by means of hyperspectral imaging[J]. Applied Optics, 57, 5970-5977(2018).
[60] Mount G H, Rusch D W, Zawodny J M et al. Measurements of NO2 in the Earth's stratosphere using a limb scanning visible light spectrometer[J]. Geophysical Research Letters, 10, 265-268(1983).
[61] Zhou B, Liu W Q, Qi F et al. Study of concentration retrieving method in differential optical absorption spectroscopy for measuring air pollutants[J]. Acta Physica Sinica, 50, 1818-1823(2001).
[62] Li A, Xie P H, Liu W Q et al. Monitoring of total emission volume from pollution sources based on passive differential optical absorption spectroscopy[J]. Acta Optica Sinica, 27, 1537-1542(2007).
[63] Wu F C, Li A, Xie P H et al. Dectection and distribution of tropospheric NO2 vertical column density based on mobile multi-axis differential optical absorption spectroscopy[J]. Acta Physica Sinica, 64, 198-208(2015).
[64] Shen L L, Qin M, Sun W et al. Cruise observation of SO2, NO2, and benzene with mobile portable DOAS in the industrial park[J]. Spectroscopy and Spectral Analysis, 36, 1936-1940(2016).
[65] Zhou B, Chen L, Pundt I et al. Developing of DOAS in China[J]. SPIE Asia-Pacific Remote Sensing, 272-276(2003).
[66] Zhang Y G. Absorption Spectroscopic Analysis and On-Line Monitoring Method of Sulfur Dioxide and Nitrogen Oxide[D](2012).
[67] Zhou B, Liu W Q, Qi F et al. Study on differential optical absorption spectrometry for atmospheric pollutants monitoring[J]. Research of Environmental Sciences, 14, 23-26(2001).
[68] Taketani F, Kawai M, Takahashi K et al. Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser[J]. Applied Optics, 46, 907-915(2007).
[69] Gelbwachs J A, Birnbaum M, Tucker A W et al. Fluorescence determination of atmospheric NO2[J]. Opto-electronics, 4, 155-160(1972).
[70] Fincher C L, Tucker A W, Birnbaum M et al. Fluorescence ambient NO2 monitor with flashlamp pumping[J]. Applied Optics, 16, 1359-1365(1977).
[71] Bradshaw J, Davis D, Crawford J et al. Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: Comparison of measurements with model results based on airborne observations during PEM-Tropics A[J]. Geophysical Research Letters, 26, 471-474(1999).
[72] Parra J, George L A. Development of an ambient pressure laser-induced fluorescence instrument for nitrogen dioxide[J]. Applied Optics, 48, 3355-3361(2009).
[73] Sadanaga Y, Suzuki K, Yoshimoto T et al. Direct measurement system of nitrogen dioxide in the atmosphere using a blue light-emitting diode induced fluorescence technique[J]. The Review of Scientific Instruments, 85, 4101(2014).
[74] Wang D, Xie P H, Hu R Z et al. Progress of measurement of atmospheric NO3 radicals[J]. Journal of Atmospheric and Environmental, 10, 102-116(2015).
[75] MacKay G I, Schiff H I, Wiebe A et al. Measurements of NO2, H2CO and HNO3 by tunable diode-laser absorption-spectroscopy during the 1985 claremont intercomparison study[J]. Atmospheric Environment, 22, 1555-1564(1988).
[76] Schiff H I, MacKay G I, Bechara J. The use of tunable diode laser absorption spectroscopy for atmospheric measurements[J]. Research on Chemical Intermediates, 20, 525-556(1994).
[77] Volpe Horii C, Zahniser M S, Nelson D D et al. Nitric acid and nitrogen dioxide flux measurements: A new application of tunable diode laser absorption spectroscopy[C], 152-161(1999).
[78] Kan R F, Liu W Q, Zhang Y J et al. Concentration calibration method of ambient trace-gas monitoring with tunable diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 26, 392-395(2006).
[79] Han Y J. Experiment Study on Gas Velocity and Concentration Measurement Based on Absorption Spectroscopy[D](2019).
[80] Kebabian P L, Herndon S C, Freedman A. Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy[J]. Analytical Chemistry, 77, 724-728(2005).
[81] Kebabian P L, Wood E C, Herndon S C et al. A practical alternative to chemiluminescence-based detection of nitrogen dioxide: Cavity attenuated phase shift spectroscopy[J]. Environmental Science & Technology, 42, 6040-6045(2008).
[82] Wood E C, Charest J R. Chemical amplification-cavity attenuated phase shift spectroscopy measurements of atmospheric peroxy radicals[J]. Analytical Chemistry, 86, 10266-10273(2014).
[83] Li Z X. Investigation of Trace Gas Detection Based on Continuous Wave Cavity Ringdown Spectroscopy[D](2015).
[84] Rao G N, Karpf A. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser[J]. Applied Optics, 49, 4906-4914(2010).
[85] Wild R J, Edwards P M, Dubé W P et al. A measurement of total reactive nitrogen, NOy, together with NO₂, NO, and O₃ via cavity ring-down spectroscopy[J]. Environmental Science & Technology, 48, 9609-9615(2014).
[86] Hu R Z, Wang D, Xie P H et al. Diode laser cavity ring-down spectroscopy for atmospheric NO2 measurement[J]. Acta Optica Sinica, 36, 0230006(2016).
[87] Friedrich N, Tadic I, Schuladen J et al. Measurement of NOx and NOy with a thermal dissociation cavity ring-down spectrometer (TD-CRDS): Instrument characterisation and first deployment[J]. Atmospheric Measurement Techniques, 13, 5739-5761(2020).
[88] Li Z Y, Hu R Z, Xie P H et al. Simultaneous measurement of NO and NO2 by a dual-channel cavity ring-down spectroscopy technique[J]. Atmospheric Measurement Techniques, 12, 3223-3236(2019).
[89] Lv G W. Study on In-Situ Detection System of Pollution Gas Based on IBBCEAS[D](2010).
[90] Wu T, Zhao W, Chen W et al. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode[J]. Applied Physics B, 94, 85-94(2009).
[91] Kasyutich V L, Martin P A, Holdsworth R J. Phase-shift off-axis cavity-enhanced absorption detector of nitrogen dioxide[J]. Measurement Science and Technology, 17, 923-931(2006).
[92] Wu T, Coeur-Tourneur C, Dhont G et al. Simultaneous monitoring of temporal profiles of NO3, NO2 and O3 by incoherent broadband cavity enhanced absorption spectroscopy for atmospheric applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 133, 199-205(2014).
[93] Ling L Y, Xie P H, Qin M et al. Open-path incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric NO2[J]. Acta Optica Sinica, 33, 274-280(2013).
[94] Dong M L, Xu X Z, Zhao W X et al. High-sensitive trace detection of NO2 with broadband cavity-enhanced spectroscopy[J]. Journal of Applied Optics, 35, 264-269(2014).
[95] Wu T, Zha Q Z, Chen W D et al. Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong[J]. Atmospheric Environment, 95, 544-551(2014).
[96] Min K E, Washenfelder R A, Dubé W P et al. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor[J]. Atmospheric Measurement Techniques, 9, 423-440(2016).
[97] Liang S X, Qin M, Duan J et al. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2[J]. Acta Physica Sinica, 66, 86-93(2017).
[98] Duan J, Qin M, Ouyang B et al. Development of an incoherent broadband cavity-enhanced absorption spectrometer for in situ measurements of HONO and NO2[J]. Atmospheric Measurement Techniques, 11, 4531-4543(2018).
[99] Liang S X, Qin M, Xie P H et al. Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment[J]. Atmospheric Measurement Techniques, 12, 2499-2512(2019).
[100] Yi H M, Cazaunau M, Gratien A et al. Intercomparison of IBBCEAS, NitroMAC and FTIR analyses for HONO, NO2 and HCHO measurements during the reaction of NO2 with H2O vapour in the atmospheric simulation chamber of CESAM[J]. Atmospheric Measurement Techniques, 14, 5701-5715(2021).
[101] Cao W. The Development and Application of the NOx Photolytic Convertor System[D](2013).
[102] Varma R M, Venables D S, Ruth A A et al. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction[J]. Applied Optics, 48, B159-B171(2009).
[103] Lee J S, Kim Y J, Kuk B et al. Simultaneous measurements of atmospheric pollutants and visibility with a long-path DOAS system in urban areas[J]. Environmental Monitoring and Assessment, 104, 281-293(2005).
[104] Fong C, Brune W H. A laser induced fluorescence instrument for measuring tropospheric NO2[J]. Review of Scientific Instruments, 68, 4253-4262(1997).
[105] Cleary P A, Wooldridge P J, Cohen R C. Laser-induced fluorescence detection of atmospheric NO2 with a commercial diode laser and a supersonic expansion[J]. Applied Optics, 41, 6950-6956(2002).
[106] Matsumi Y, Murakami S, Kono M et al. High-sensitivity instrument for measuring atmospheric NO2[J]. Analytical Chemistry, 73, 5485-5493(2001).
[107] Dari-Salisburgo C, Di Carlo P, Giammaria F et al. Laser induced fluorescence instrument for NO2 measurements: Observations at a central Italy background site[J]. Atmospheric Environment, 43, 970-977(2009).
[108] Perkins K K, Hanisco T F, Cohen R C et al. The NOx-HNO3 system in the lower stratosphere: Insights from in situ measurements and implications of the JHNO3-[OH] relationship[J]. The Journal of Physical Chemistry A, 105, 1521-1534(2001).
[109] Matsumi Y, Taketani F, Takahashi K et al. Fluorescence detection of atmospheric nitrogen dioxide using a blue light-emitting diode as an excitation source[J]. Applied Optics, 49, 3762-3767(2010).
[110] Bian X G, Zhou S, Zhang L et al. NO2 gas detection based on standard sample regression algorithm and cavity enhanced spectroscopy[J]. Acta Physica Sinica, 70, 702(2021).
[111] Wu T, Zhao W X, Li J S et al. Incoherent broadband cavity enhanced absorption spectroscopy based on LED[J]. Spectroscopy and Spectral Analysis, 28, 2469-2472(2008).
[112] Hargrove J, Wang L M, Muyskens K et al. Cavity ring-down spectroscopy of ambient NO2 with quantification and elimination of interferences[J]. Environmental Science & Technology, 40, 7868-7873(2006).
[113] Singh H B, Herlth D, Kolyer R et al. Impact of biomass burning emissions on the composition of the South Atlantic troposphere: Reactive nitrogen and ozone[J]. Journal of Geophysical Research: Atmospheres, 101, 24203-24219(1996).
[114] Wooldridge P J, Perring A E, Bertram T H et al. Total peroxy nitrates (ΣPNs) in the atmosphere: The thermal dissociation-laser induced fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements[J]. Atmospheric Measurement Techniques, 3, 593-607(2010).
[115] Phillips G J, Pouvesle N, Thieser J et al. Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: First analysis of results in the boreal forest and implications for the measurement of PAN fluxes[J]. Atmospheric Chemistry and Physics, 13, 1129-1139(2013).
[116] Sobanski N, Schuladen J, Schuster G et al. A five-channel cavity ring-down spectrometer for the detection of NO2, NO3, N2O5, total peroxy nitrates and total alkyl nitrates[J]. Atmospheric Measurement Techniques, 9, 5103-5118(2016).
[117] Thieser J, Schuster G, Schuladen J et al. A two-channel thermal dissociation cavity ring-down spectrometer for the detection of ambient NO2, RO2NO2 and RONO2[J]. Atmospheric Measurement Techniques, 9, 553-576(2016).
[118] Lin C, Hu R Z, Xie P H et al. Simultaneous measurement of nitrogen dioxide and organic nitrate based on thermal dissociation cavity ring-down spectroscopy[J]. Acta Optica Sinica, 40, 1201003(2020).
[119] Keehan N I, Brownwood B, Marsavin A et al. A thermal-dissociation-cavity ring-down spectrometer (TD-CRDS) for the detection of organic nitrates in gas and particle phases[J]. Atmospheric Measurement Techniques, 13, 6255-6269(2020).
[120] Reed C, Brumby C A, Crilley L R et al. HONO measurement by differential photolysis[J]. Atmospheric Measurement Techniques, 9, 2483-2495(2016).
[121] Li M Z, Liu Y C, Yu S S et al. An intercomparison study of online NO2 measurement from ambient air in the vicinity of Shanghai City[J]. Acta Scientiae Circumstantiae, 38, 2297-2303(2018).
[122] Zhang B Y, Zhao X M, Zhang J B. Characteristics of peroxyacetyl nitrate pollution during a 2015 winter haze episode in Beijing[J]. Environmental Pollution, 244, 379-387(2019).
[123] Chen J, Wu H, Liu A W et al. Field measurement of NO2 and RNO2 by two-channel thermal dissociation cavity ring down spectrometer[J]. Chinese Journal of Chemical Physics, 30, 493-498(2017).
[124] Dong L. Research on Polluted Gas Detection Based on Cavity Enhanced Absorption Spectroscopy[D](2007).
Get Citation
Copy Citation Text
Jinzhao TONG, Chuan LIN, Renzhi HU, Pinhua XIE, Tao WU, Jiawei WANG, Liang CHEN. Progress of detection technology of nitrogen dioxide and organic nitrates[J]. Journal of Atmospheric and Environmental Optics, 2024, 19(3): 265
Category:
Received: Apr. 8, 2022
Accepted: --
Published Online: Jul. 17, 2024
The Author Email: Renzhi HU (rzhu@aiofm.ac.cn)