Acta Optica Sinica, Volume. 41, Issue 13, 1306019(2021)

Optical Fiber Vibration-Sensing Event Recognition Based on CLDNN

Zichun Zhou1,2,3, Kun Liu1,2,3、*, Junfeng Jing1,2,3, Tianhua Xu1,2,3, Shuang Wang1,2,3, Zhenshi Sun1,2,3, Hairuo Guo1,2,3, and Tiegen Liu1,2,3
Author Affiliations
  • 1School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronic Information Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
  • 3Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(11)
    Schematic of DMZI distributed optical fiber vibration sensing system
    Equivalent optical path of DMZI distributed optical fiber vibration sensor
    Network structure of CLDNN
    DMZI distributed optical fiber vibration sensing system. (a) Sensing part; (b) demodulation part
    Preprocessing of knocking. (a) Schematic of superposition process of 5 frames of signals; (b) schematic of signal misalignment clipping after superposition
    Characteristic maps of 5 types of intrusion event signals. (a) No intrusion; (b) knocking; (c) crashing; (d) waggling; (e) kicking
    Variation of error function values of CNN in CLDNN under three convolution levels
    • Table 1. Structural design parameters of CLDNN

      View table

      Table 1. Structural design parameters of CLDNN

      LayerKernelsizeStrideOutputdimensionFunction
      Conv5×51(100,40,40,64)Relu
      Pooling2×22(100,20,20,64)Max Pooling
      Conv5×51(100,20,20,64)Relu
      Pooling2×22(100,10,10,64)Max Pooling
      Conv5×51(100,10,10,64)Relu
      Pooling2×22(100,5,5,64)Max Pooling
      Conv5×51(100,5,5,64)Relu
      Line--(100,256)Line
      LSTM128--Tanh
      FC128(100,5)-
      Output--(100,5)Softmax
    • Table 2. Average recognition rate and average training time under different clipping conditions in three tests

      View table

      Table 2. Average recognition rate and average training time under different clipping conditions in three tests

      ParameterN=20N=30N=40N=50
      Accuracy 1 /%78.388.096.695.9
      Accuracy 2 /%75.087.496.294.7
      Accuracy 3 /%72.989.396.195.1
      Time /s2034300454208982
    • Table 3. Comparison of recognition results of three algorithms

      View table

      Table 3. Comparison of recognition results of three algorithms

      AlgorithmAverage accuracy /%Number of eventsPreprocessing time /sIdentification time /s
      CLDNN96.2455×10-50.006
      RBF-EMD85.7541.140.510
      SVM93.8240.300.300
    • Table 4. [in Chinese]

      View table

      Table 4. [in Chinese]

      AlgorithmNo intrusionKnockingCrashingWagglingKicking
      CLDNN100.099.895.287.598.7
    Tools

    Get Citation

    Copy Citation Text

    Zichun Zhou, Kun Liu, Junfeng Jing, Tianhua Xu, Shuang Wang, Zhenshi Sun, Hairuo Guo, Tiegen Liu. Optical Fiber Vibration-Sensing Event Recognition Based on CLDNN[J]. Acta Optica Sinica, 2021, 41(13): 1306019

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Mar. 30, 2021

    Accepted: Jun. 2, 2021

    Published Online: Jul. 11, 2021

    The Author Email: Kun Liu (beiyangkl@tju.edu.cn)

    DOI:10.3788/AOS202141.1306019

    Topics