Optics and Precision Engineering, Volume. 32, Issue 9, 1420(2024)

Segmentation network for metastatic lymph nodes of head and neck tumors

Tao ZHOU1,2, Daozong SHI1,2、*, Jiawen XUE3, Caiyue PENG1,2, Pei DANG1,2, and Zhongwei ZHOU3
Author Affiliations
  • 1College of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan75001, China
  • 3College of Oral Cavity, Ningxia Medical University, Yinchuan750004, China
  • show less
    References(21)

    [1] PYNNONEN M A. Clinical practice guideline: Evaluation of the neck mass in adults[J]. Otolaryngol. Head Neck Surg., 157, 355(2017).

    [2] DILLEKÅS H, ROGERS M S, STRAUME O. Are 90% of deaths from cancer caused by metastases?[J]. Cancer Medicine, 8, 5574-5576(2019).

    [3] LEE S, CHO M, LEE W et al. Predicting lymph node metastasis and distant metastasis using differential correlations of miRNAs and their target RNAs in cancer[C], 457-463(2022).

    [4] OYAMA D, ADACHI Y, TSUYUGUCHI N. Magnetic resonance imaging using a magnetoresistive sensor with a flux transformer[J]. IEEE Transactions on Magnetics, 59, 5100505(2023).

    [5] WANG Q, QIAO K, QIN R X et al. Predictive model of breast cancer lymph node metastasis based on deep learning (E-Transformer)[C], 168-173(2021).

    [6] [6] 周涛, 党培, 陆惠玲, 等. 跨模态跨尺度跨维度的PET/CT图像的Transformer分割模型[J/OL]. 电子与信息学报, 2022: 1-9. (2022-12-13). https://kns.cnki.net/kcms/detail/11.4494.TN.202212 13.1157.001.html.ZHOUT, DANGP, LUH L, et al. A transformer segmentation model for PET/CT images with cross-modal [J/OL]. Journal of Electronics & Information, 2022: 1-9. (2022-12-13). https://kns.cnki.net/kcms/detail/11.4494.TN.20221213. 1157.001.html.(in Chinese)

    [7] GURNEY-CHAMPION O J, KIESELMANN J P, WONG K H et al. A convolutional neural network for contouring metastatic lymph nodes on diffusion-weighted magnetic resonance images for assessment of radiotherapy response[J]. Physics and Imaging in Radiation Oncology, 15, 1-7(2020).

    [8] TONG Z X, KANG Y X, YING H et al. A novel framework for lymphatic invasion detection based on efficient medical images translation network[C], 669-673(2021).

    [9] LUO Y W, XIN J M, LIU S J et al. Lymph node metastasis classification based on semi-supervised multi-view network[C], 675-680(2020).

    [10] ZHAO X Y, XIE P Y, WANG M M et al. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-MRI for rectal cancer: a multicentre study[J]. EBioMedicine, 56, 102780(2020).

    [11] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [12] ATKINSON D, HILL D L G, STOYLE P N R et al. Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion[J]. IEEE Transactions on Medical Imaging, 16, 903-910(1997).

    [13] [13] 周涛, 赵雅楠, 陆惠玲, 等. 医学图像实例分割: 从有候选区域向无候选区域[J]. 生物医学工程学杂志, 2022, 39(6): 1218-1232.ZHOUT, ZHAOY N, LUH L, et al. Medical image instance segmentation: from candidate region to no candidate region[J]. Journal of Biomedical Engineering, 2022, 39(6): 1218-1232. (in Chinese)

    [14] BOLYA D, ZHOU C, XIAO F Y et al. YOLACT: real-time instance segmentation[C], 9156-9165(2019).

    [15] [15] 周涛, 刘赟璨, 侯森宝, 等. REC-ResNet:面向COVID-19辅助诊断的特征增强模型[J]. 光学 精密工程, 2023, 31(14): 2093-2110. doi: 10.37188/OPE.20233114.2093ZHOUT, LIUY C, HOUS B, et al. REC-ResNet: feature enhancement model for COVID-19 aided diagnosis[J]. Opt. Precision Eng., 2023, 31(14): 2093-2110. (in Chinese). doi: 10.37188/OPE.20233114.2093

    [16] JIAO J, QIN H W. Adaptively weighted balanced feature pyramid for object detection[C], 1214-1217(2023).

    [17] DIAO Y J, LIU S W, GAO X Z et al. CNN based on multiscale window self-attention mechanism for radar HRRP target recognition[C], 281-285(2022).

    [18] YANG Z X, ZHU L C, WU Y et al. Gated channel transformation for visual recognition[C], 11791-11800(2020).

    [19] ZHOU C[M]. Yolact++ Better Real-Time Instance Segmentation(2020).

    [20] GAO Y J, WANG X Y, LI Q H. Improved cervical cell segmentation algorithm based on cascade mask RCNN[C], 1775-1780(2023).

    [21] [21] 梁新宇, 林洗坤, 权冀川, 等. 基于深度学习的图像实例分割技术研究进展[J]. 电子学报, 2020, 48(12): 2476-2486. doi: 10.3969/j.issn.0372-2112.2020.12.025LIANGX Y, LINX K, QUANJ CH, et al. Research on the progress of image instance segmentation based on deep learning[J]. Acta Electronica Sinica, 2020, 48(12): 2476-2486.(in Chinese). doi: 10.3969/j.issn.0372-2112.2020.12.025

    Tools

    Get Citation

    Copy Citation Text

    Tao ZHOU, Daozong SHI, Jiawen XUE, Caiyue PENG, Pei DANG, Zhongwei ZHOU. Segmentation network for metastatic lymph nodes of head and neck tumors[J]. Optics and Precision Engineering, 2024, 32(9): 1420

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 10, 2023

    Accepted: --

    Published Online: Jun. 2, 2024

    The Author Email: Daozong SHI (shidaozong167@163.com)

    DOI:10.37188/OPE.20243209.1420

    Topics