Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1617001(2025)

Fused Attention Network for Intravascular Optical Coherence Tomography Image Stent Segmentation

Shaojiang Wei and Wei Zhang*
Author Affiliations
  • School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
  • show less
    Figures & Tables(13)
    Structure diagram of FAU-Net model
    Schematic diagram of WTD module
    Structure diagram of FA module
    Structure diagram of MSFM module
    Images of different stent conditions in the dataset. (a) Normal stent image; (b) blood artifact contamination image; (c) stent malapposition image; (d) stent overlap image
    Preprocessed images in different coordinate systems; (a) Cartesian coordinate system; (b) polar coordinate system
    Visualization of the segmentation results of different algorithms on various types of stent images. (a)‒(c) Normal stent images; (d)‒(f) stent images affected by blood artifacts; (g)‒(i) images of the stent detached from the pipe wall
    Visualization of different downsampling effects
    Ablation experiment visualization results
    • Table 1. Comparative experimental results of different algorithms

      View table

      Table 1. Comparative experimental results of different algorithms

      MethodIoUDice coefficientAccuracyPrecisionF1-scoreSensitivity
      U-Net61.5871.9199.929143.8942.1444.61
      U-Net++60.9571.1499.931744.5341.1841.15
      TransAttUnet63.4673.5599.931543.8742.0644.29
      Attention U-Net62.4772.7299.931144.7342.1843.93
      KiU-Net63.0973.1599.930942.7941.0942.89
      UNeXt62.6772.6499.930740.6440.5841.99
      ConvFormer64.2174.0599.930441.8341.1345.35
      FAU-Net65.4575.9199.933144.9242.2844.01
    • Table 2. Comparison results of attention modules

      View table

      Table 2. Comparison results of attention modules

      ModuleIoUDice coefficientAccuracyPrecisionF1-scoreSensitivity
      U-Net+CBAM62.3672.6599.931143.6542.0144.08
      U-Net+FA63.4673.5599.931543.8742.0644.29
    • Table 3. Results of ablation experiments

      View table

      Table 3. Results of ablation experiments

      ModelIoUDice coefficientAccuracyPrecisionF1-scoreSensitivity
      U-Net61.5871.9199.929143.8942.1444.61
      U-Net+WTD63.6273.3999.932044.5340.7643.56
      U-Net+FA63.4673.5599.931543.8742.0644.29
      U-Net+MSFM62.1672.3099.928144.7342.1843.93
      U-Net+WTD+FA64.3974.5399.930942.7941.0945.57
      U-Net+FA+MSFM63.8673.8599.932440.6440.5841.99
      U-Net+WTD+MSFM64.7774.6399.930744.9242.2844.01
      U-Net+WTD+FA+MSFM65.8976.0499.933544.9542.4844.01
    • Table 4. Ablation experiment results of batch size parameter

      View table

      Table 4. Ablation experiment results of batch size parameter

      Batch sizeU-NetU-Net++TransAttUnetAttention U-NetKiU-NetUNeXtFAU-Net
      271.8871.1573.6172.6473.1172.6275.84
      471.9171.1473.5572.7273.1572.6475.91
      671.9371.0873.4972.5573.0972.7175.89
      871.8771.1973.4472.5973.2472.5975.77
    Tools

    Get Citation

    Copy Citation Text

    Shaojiang Wei, Wei Zhang. Fused Attention Network for Intravascular Optical Coherence Tomography Image Stent Segmentation[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1617001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Jan. 14, 2025

    Accepted: Mar. 5, 2025

    Published Online: Aug. 1, 2025

    The Author Email: Wei Zhang (2020050@hebut.edu.cn)

    DOI:10.3788/LOP250511

    CSTR:32186.14.LOP250511

    Topics