International Journal of Extreme Manufacturing, Volume. 7, Issue 2, 22005(2025)

Triboelectric energy harvesting technology for self-powered personal health management

Kwon Yong Hyun, Meng Xiangchun, Xiao Xiao, Suh In-Yong, Kim Daun, Lee Jaehan, and Kim Sang-Woo
References(132)

[1] [1] Jiang D J, Shi B J, Ouyang H, Fan Y B, Wang Z L and Li Z 2020 Emerging implantable energy harvesters and self-powered implantable medical electronicsACS Nano146436–48

[2] [2] Shen S, Xiao X, Xiao X and Chen J 2021 Wearable triboelectric nanogenerators for heart rate monitoringChem. Commun.575871–9

[3] [3] Shin Y E, Lee J E, Park Y, Hwang S H, Chae H G and Ko H 2018 Sewing machine stitching of polyvinylidene fluoride fibers: programmable textile patterns for wearable triboelectric sensorsJ. Mater. Chem.A622879–88

[4] [4] Chen G R, Au C and Chen J 2021 Textile triboelectric nanogenerators for wearable pulse wave monitoringTrends Biotechnol.391078–92

[5] [5] Zhang Z C, Zhang J W, Zhang H, Wang H G, Hu Z W, Xuan W P, Dong S R and Luo J K 2019 A portable triboelectric nanogenerator for real-time respiration monitoringNanoscale Res. Lett.14354

[6] [6] Wang S, Tai H L, Liu B H, Duan Z H, Yuan Z, Pan H, Su Y J, Xie G Z, Du X S and Jiang Y D 2019 A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoringNano Energy58312–21

[7] [7] Li J, Long Y, Yang F and Wang X D 2020 Respiration-driven triboelectric nanogenerators for biomedical applicationsEcoMat2e12045

[8] [8] Wang Y, Haick H, Guo S Y, Wang C Y, Lee S, Yokota T and Someya T 2022 Skin bioelectronics towards long-term, continuous health monitoringChem. Soc. Rev.513759–93

[9] [9] Berggren M, Gowacki E D, Simon D T, Stavrinidou E and Tybrandt K 2022In vivoorganic bioelectronics for neuromodulationChem. Rev.1224826–46

[10] [10] Jung Y H, Kim J U, Lee J S, Shin J H, Jung W, Ok J and Kim T I 2020 Injectable biomedical devices for sensing and stimulating internal body organsAdv. Mater.321907478

[11] [11] Wu S J, Yuk H, Wu J J, Nabzdyk C S and Zhao X H 2021 A multifunctional origami patch for minimally invasive tissue sealingAdv. Mater.332007667

[12] [12] Wen F, He T Y Y, Yang Y Q, Wang C and Lee C 2023 Triboelectric nanogenerator as wearable sensing devicesHandbook of Triboelectric Nanogeneratorsed Z L Wang, Y Yang, J Y Zhai and J Wang (Springer) pp 1487–536

[13] [13] Wang H, Cheng J, Wang Z Z, Ji L H and Wang Z L 2021 Triboelectric nanogenerators for human-health careSci. Bull.66490–511

[14] [14] Li R N, Wei X L, Xu J H, Chen J H, Li B, Wu Z Y and Wang Z L 2021 Smart wearable sensors based on triboelectric nanogenerator for personal healthcare monitoringMicromachines12352

[15] [15] Wang W Let al2022 Applications of nanogenerators for biomedical engineering and healthcare systemsInfoMat4e12262

[16] [16] Yoon H J and Kim S W 2020 Nanogenerators to power implantable medical systemsJoule41398–407

[17] [17] Zhao L C, Zou H X, Wei K X, Zhou S X, Meng G and Zhang W M 2023 Mechanical intelligent energy harvesting: from methodology to applicationsAdv. Energy Mater.132300557

[18] [18] Petrushevskaya A, Rabin A and Kilimnik V 2019 Energy fields' impact on biological objectsProc. 24th Conf. of Open Innovations Associationvol 46 (FRUCT)

[19] [19] Kang Met al2022 Virus blocking textile for SARS-CoV-2 using human body triboelectric energy harvestingCell Rep. Phys. Sci.3100813

[20] [20] Hu S Met al2022 Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogeneratorNano-Micro. Lett.14115

[21] [21] Jiang Wet al2018 Fully bioabsorbable natural-materials-based triboelectric nanogeneratorsAdv. Mater.301801895

[22] [22] Peng X, Dong K, Ye C Y, Jiang Y, Zhai S Y, Cheng R W, Liu D, Gao X P, Wang J and Wang Z L 2020 A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogeneratorsSci. Adv.6eaba9624

[23] [23] Zheng Q, Zou Y, Zhang Y L, Liu Z, Shi B J, Wang X X, Jin Y M, Ouyang H, Li Z and Wang Z L 2016 Biodegradable triboelectric nanogenerator as a life-time designed implantable power sourceSci. Adv.2e1501478

[24] [24] Lu L Yet al2018 Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implantsAdv. Energy Mater.81703035

[25] [25] Jiang L M, Lu G X, Yang Y, Zeng Y S, Sun Y Z, Li R Z, Humayun M S, Chen Y and Zhou Q F 2021 Photoacoustic and piezo-ultrasound hybrid-induced energy transfer for 3D twining wireless multifunctional implantsEnergy Environ. Sci.141490–505

[26] [26] Choi Y S, Kim S W and Kar-Narayan S 2021 Materials-related strategies for highly efficient triboelectric energy generatorsAdv. Energy Mater.112003802

[27] [27] Won S M, Cai L, Gutruf P and Rogers J A 2023 Wireless and battery-free technologies for neuroengineeringNat. Biomed. Eng.7405–23

[28] [28] Fu H L, Mei X T, Yurchenko D, Zhou S X, Theodossiades S, Nakano K and Yeatman E M 2021 Rotational energy harvesting for self-powered sensingJoule51074–118

[29] [29] Fan F R, Tian Z Q and Wang Z L 2012 Flexible triboelectric generatorNano Energy1328–34

[30] [30] Hajra S, Vivekananthan V, Sahu M, Khandelwal G, Joseph Raj N P M and Kim S J 2021 Triboelectric nanogenerator using multiferroic materials: an approach for energy harvesting and self-powered magnetic field detectionNano Energy85105964

[31] [31] Zhang X S, Han M D, Meng B and Zhang H X 2015 High performance triboelectric nanogenerators based on large-scale mass-fabrication technologiesNano Energy11304–22

[32] [32] Wang H B, Han M D, Song Y and Zhang H X 2021 Design, manufacturing and applications of wearable triboelectric nanogeneratorsNano Energy81105627

[33] [33] Wang Y, Yang Y and Wang Z L 2017 Triboelectric nanogenerators as flexible power sourcesnpj Flex. Electron.110

[34] [34] Xu Cet al2018 On the electron-transfer mechanism in the contact-electrification effectAdv. Mater.301706790

[35] [35] Park B G, Lee C, Kim Y J, Park J, Kim H, Jung Y, Ko J S, Kim S W, Lee J H and Cho H 2022 Toxic micro/nano particles removal in water via triboelectric nanogeneratorNano Energy100107433

[36] [36] Kim J, Lee J H, Ryu H, Lee J H, Khan U, Kim H, Kwak S S and Kim S W 2017 High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P(VDF-TrFE) with controlled crystallinity and dipole alignmentAdv. Funct. Mater.271700702

[37] [37] Cheng G G, Jiang S Y, Li K, Zhang Z Q, Wang Y, Yuan N Y, Ding J N and Zhang W 2017 Effect of argon plasma treatment on the output performance of triboelectric nanogeneratorAppl. Surf. Sci.412350–6

[38] [38] Meng X C, Xiao X, Jeon S, Kim D, Park B J, Kim Y J, Rubab N, Kim S and Kim S W 2023 An ultrasound-driven bioadhesive triboelectric nanogenerator for instant wound sealing and electrically accelerated healing in emergenciesAdv. Mater.352209054

[39] [39] Kim J, Ryu H, Lee J H, Khan U, Kwak S S, Yoon H J and Kim S W 2020 High permittivity CaCu3Ti4O12 particle-induced internal polarization amplification for high performance triboelectric nanogeneratorsAdv. Energy Mater.101903524

[40] [40] Shin S H, Bae Y E, Moon H K, Kim J, Choi S H, Kim Y, Yoon H J, Lee M H and Nah J 2017 Formation of triboelectric seriesviaatomic-level surface functionalization for triboelectric energy harvestingACS Nano116131–8

[41] [41] Li S Y, Fan Y, Chen H Q, Nie J H, Liang Y X, Tao X L, Zhang J, Chen X Y, Fu E G and Wang Z L 2020 Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantationEnergy Environ. Sci.13896–907

[42] [42] Peng Z Het al2022 Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtrationNat. Commun.137835

[43] [43] Ouyang Het al2019 Symbiotic cardiac pacemakerNat. Commun.101821

[44] [44] Cao X, Jie Y, Wang N and Wang Z L 2016 Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental scienceAdv. Energy Mater.61600665

[45] [45] Wang Z, Liu W L, He W C, Guo H Y, Long L, Xi Y, Wang X, Liu A P and Hu C G 2021 Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy managementJoule5441–55

[46] [46] Cinquin Pet al2010 A glucose BioFuel cell implanted in ratsPLoS One5e10476

[47] [47] Rasmussen M, Abdellaoui S and Minteer S D 2016 Enzymatic biofuel cells: 30 years of critical advancementsBiosens. Bioelectron.7691–102

[48] [48] Siddique A R M, Mahmud S and Van Heyst B 2015 A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanismsEnergy Convers. Manage.106728–47

[49] [49] Carneiro P, Dos Santos M P S, Rodrigues A, Ferreira J A F, Simes J A O, Marques A T and Kholkin A L 2020 Electromagnetic energy harvesting using magnetic levitation architectures: a reviewAppl. Energy260114191

[50] [50] Jiang L M and Wu J G 2023 Emerging ultrasonic bioelectronics for personalized healthcareProg. Mater. Sci.136101110

[51] [51] Zhao J W, Ghannam R, Htet K O, Liu Y C, Law M K, Roy V A L, Michel B, Imran M A and Heidari H 2020 Self-powered implantable medical devices: photovoltaic energy harvesting reviewAdv. Healthcare Mater.92000779

[52] [52] Wang Z L 2020 Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolutionAdv. Energy Mater.102000137

[53] [53] Hinchet R, Yoon H J, Ryu H, Kim M K, Choi E K, Kim D S and Kim S W 2019 Transcutaneous ultrasound energy harvesting using capacitive triboelectric technologyScience365491–4

[54] [54] Bai Y, Xu L, He C, Zhu L P, Yang X D, Jiang T, Nie J H, Zhong W and Wang Z L 2019 High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mappingNano Energy66104117

[55] [55] Xu Y H, Yang W X, Lu X H, Yang Y F, Li J P, Wen J M, Cheng T H and Wang Z L 2021 Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoringACS Nano1516368–75

[56] [56] Xu W Het al2020 A droplet-based electricity generator with high instantaneous power densityNature578392–6

[57] [57] Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F and Wang Z L 2013 Theoretical study of contact-mode triboelectric nanogenerators as an effective power sourceEnergy Environ. Sci.63576–83

[58] [58] Niu S M, Liu Y, Wang S H, Lin L, Zhou Y S, Hu Y F and Wang Z L 2013 Theory of sliding-mode triboelectric nanogeneratorsAdv. Mater.256184–93

[59] [59] Wang S H, Lin L, Xie Y N, Jing Q S, Niu S M and Wang Z L 2013 Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanismNano Lett.132226–33

[60] [60] Long L, Liu W L, Wang Z, He W C, Li G, Tang Q, Guo H Y, Pu X J, Liu Y K and Hu C G 2021 High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvestingNat. Commun.124689

[61] [61] Yang Y, Zhang H L, Chen J, Jing Q S, Zhou Y S, Wen X N and Wang Z L 2013 Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor systemACS Nano77342–51

[62] [62] Zhao Z H, Zhou L L, Li S X, Liu D, Li Y H, Gao Y K, Liu Y B, Dai Y J, Wang J and Wang Z L 2021 Selection rules of triboelectric materials for direct-current triboelectric nanogeneratorNat. Commun.124686

[63] [63] Liu D, Yin X, Guo H Y, Zhou L L, Li X Y, Zhang C L, Wang J and Wang Z L 2019 A constant current triboelectric nanogenerator arising from electrostatic breakdownSci. Adv.5eaav6437

[64] [64] Wang H B, Huang S Y, Kuang H Z, Zhang C, Liu Y L, Zhang K H, Cai X Y, Wang X Z, Luo J K and Wang Z L 2023 A united triboelectrification mechanism for contacts between all types of materialsAdv. Energy Mater.132300529

[65] [65] Sun Q Zet al2023 Density-of-states matching-induced ultrahigh current density and high-humidity resistance in a simply structured triboelectric nanogeneratorAdv. Mater.352210915

[66] [66] Nan Y, Shao J J, Li D, Guo X, Willatzen M and Wang Z L 2023 Physical mechanisms of contact-electrification induced photon emission spectroscopy from interfacesNano Res.1611545–55

[67] [67] Cheng B L, Xu Q, Ding Y Q, Bai S, Jia X F, Yu Y D C, Wen J and Qin Y 2021 High performance temperature difference triboelectric nanogeneratorNat. Commun.124782

[68] [68] Lee Y S, Jeon S, Kim D, Lee D M, Kim D and Kim S W 2023 High performance direct current-generating triboelectric nanogenerators based on tribovoltaic p-n junction with ChCl-passivated CsFAMA perovskiteNano Energy106108066

[69] [69] Kim M, Kim S H, Park M U, Lee C, Kim M, Yi Y and Yoo K H 2019 MoS2 triboelectric nanogenerators based on depletion layersNano Energy65104079

[70] [70] Kim J Ket al2023 Electric-field-driven interfacial trapping of drifting triboelectric charges via contact electrificationEnergy Environ. Sci.16598–609

[71] [71] Zheng Qet al2016In vivoself-powered wireless cardiac monitoringviaimplantable triboelectric nanogeneratorACS Nano106510–8

[72] [72] Tang Q W, Ke Q, Chen Q, Zhang X Y, Su J Y, Ning C Y and Fang L M 2023 Flexible, breathable, and self-powered patch assembled of electrospun polymer triboelectric layers and polypyrrole-coated electrode for infected chronic wound healingACS Appl. Mater. Interfaces1517641–52

[73] [73] Lee S, Wang H, Xian Peh W Y, He T Y Y, Yen S C, Thakor N V and Lee C 2019 Mechano-neuromodulation of autonomic pelvic nerve for underactive bladder: a triboelectric neurostimulator integrated with flexible neural clip interfaceNano Energy60449–56

[74] [74] Xiao X, Meng X C, Kim D, Jeon S, Park B J, Cho D S, Lee D M and Kim S W 2023 Ultrasound-driven injectable and fully biodegradable triboelectric nanogeneratorsSmall Methods72201350

[75] [75] Luo J J, Han K, Wu X Q, Cai H H, Jiang T, Zhou H B and Wang Z L 2021 Self-powered mobile sterilization and infection control systemNano Energy88106313

[76] [76] Liu Zet al2024 A self-powered intracardiac pacemaker in swine modelNat. Commun.15507

[77] [77] Lu Y J, Tian H, Cheng J, Zhu F, Liu B, Wei S S, Ji L H and Wang Z L 2022 Decoding lip language using triboelectric sensors with deep learningNat. Commun.131401

[78] [78] Sheng F F, Zhang B, Zhang Y H, Li Y Y, Cheng R W, Wei C H, Ning C, Dong K and Wang Z L 2022 Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoringACS Nano1610958–67

[79] [79] Lee P C, Ou Y C, Wang R C and Liu C P 2021 Enhanced output performance of ZnO thin film triboelectric nanogenerators by leveraging surface limited ga doping and insulting bulkNano Energy89106394

[80] [80] Xiong J Q, Cui P, Chen X L, Wang J X, Parida K, Lin M F and Lee P S 2018 Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvestingNat. Commun.94280

[81] [81] Gorskii O V 2018 Potential power supply methods for implanted devicesBiomed. Eng.52204–9

[82] [82] Amar A B, Kouki A B and Cao H 2015 Power approaches for implantable medical devicesSensors1528889–914

[83] [83] Wang C Y, Guo H Y, Wang P, Li J W, Sun Y H and Zhang D 2023 An advanced strategy to enhance TENG output: reducing triboelectric charge decayAdv. Mater.352209895

[84] [84] Gong X R, Zhang H H and Li X 2024 Material selection and performance optimization strategies for TENG-based self-powered gas sensorsJ. Alloys Compd.976173230

[85] [85] Ibrahim M, Jiang J X, Wen Z and Sun X H 2021 Surface engineering for enhanced triboelectric nanogeneratorNanoenergy Adv.158–80

[86] [86] Kim D W, Lee J H, Kim J K and Jeong U 2020 Material aspects of triboelectric energy generation and sensorsNPG Asia Mater.126

[87] [87] Yu Y H and Wang X D 2016 Chemical modification of polymer surfaces for advanced triboelectric nanogenerator developmentExtrem. Mech. Lett.9514–30

[88] [88] Nurmakanov Y, Kalimuldina G, Nauryzbayev G, Adair D and Bakenov Z 2021 Structural and chemical modifications towards high-performance of triboelectric nanogeneratorsNanoscale Res. Lett.16122

[89] [89] Jin Tet al2020 Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applicationsNat. Commun.115381

[90] [90] Fan F R, Lin L, Zhu G, Wu W Z, Zhang R and Wang Z L 2012 Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic filmsNano Lett.123109–14

[91] [91] Zhou Q T, Pan J, Deng S J, Xia F and Kim T 2021 Triboelectric nanogenerator-based sensor systems for chemical or biological detectionAdv. Mater.332008276

[92] [92] Lee D Met al2023 An on-demand bioresorbable neurostimulatorNat. Commun.147315

[93] [93] Luo W K, Luo R Z, Liu J J, Li Z and Wang Y 2024 Self-powered electrically controlled drug release systems based on nanogeneratorAdv. Funct. Mater.342311938

[94] [94] Huo Z Y, Lee D M, Wang S, Kim Y J and Kim S W 2021 Emerging energy harvesting materials and devices for self-powered water disinfectionSmall Methods52100093

[95] [95] Huo Z Y, Kim Y J, Suh I Y, Lee D M, Lee J H, Du Y, Wang S, Yoon H J and Kim S W 2021 Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric fieldNat. Commun.123693

[96] [96] Guo H Yet al2018 A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aidsSci. Robot.3eaat2516

[97] [97] Yi Q, Pei X C, Das P, Qin H T, Lee S W and Esfandyarpour R 2022 A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoringNano Energy101107511

[98] [98] Zou Yet al2019 A bionic stretchable nanogenerator for underwater sensing and energy harvestingNat. Commun.102695

[99] [99] Arab Hassani F, Mogan R P, Gammad G G L, Wang H, Yen S C, Thakor N V and Lee C 2018 Toward self-control systems for neurogenic underactive bladder: a triboelectric nanogenerator sensor integrated with a bistable micro-actuatorACS Nano123487–501

[100] [100] Li Z 2023 Triboelectric nanogenerators for implantable medical scienceHandbook of Triboelectric Nanogeneratorsed Z L Wang, Y Yang, J Y Zhai and J Wang (Springer) pp 597–626

[101] [101] Miyazato M, Yoshimura N and Chancellor M B 2013 The other bladder syndrome: underactive bladderRev. Urol.1511–22

[102] [102] Luo R Z, Dai J Y, Zhang J P and Li Z 2021 Accelerated skin wound healing by electrical stimulationAdv. Healthcare Mater.102100557

[103] [103] Zhang W F, Li G C, Wang B J, Zhu Q Q, Zeng L L, Wen Z, Yang C and Pan Y 2022 Triboelectric nanogenerators for cellular bioelectrical stimulationAdv. Funct. Mater.322203029

[104] [104] Ouyang Q Let al2019 Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogeneratorNano Energy62610–9

[105] [105] Yang Yet al2022 Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulationNat. Commun.136908

[106] [106] Yao G, Kang L, Li J, Long Y, Wei H, Ferreira C A, Jeffery J J, Lin Y, Cai W B and Wang X D 2018 Effective weight control via an implanted self-powered vagus nerve stimulation deviceNat. Commun.95349

[107] [107] Yao Get al2019 Self-activated electrical stimulation for effective hair regeneration via a wearable omnidirectional pulse generatorACS Nano1312345–56

[108] [108] Xu J Het al2023 Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute diseaseNat. Commun.14869

[109] [109] Sujith O K 2008 Functional electrical stimulation in neurological disordersEur. J. Neurol.15437–44

[110] [110] Khalil I Aet al2018 Morbidity and mortality due to shigella and enterotoxigenicEscherichia colidiarrhoea: the global burden of disease study 1990-2016Lancet Infect. Dis.181229–40

[111] [111] Li A P, Ho H H, Barman S R, Lee S, Gao F and Lin Z H 2022 Self-powered antibacterial systems in environmental purification, wound healing, and tactile sensing applicationsNano Energy93106826

[112] [112] Nguyen T T, Johnson G R, Bell S C and Knibbs L D 2022 A systematic literature review of indoor air disinfection techniques for airborne bacterial respiratory pathogensInt. J. Environ. Res. Public Health191197

[113] [113] Guo Let al2023 Efficient inactivation of the contamination with pathogenic microorganisms by a combination of water spray and plasma-activated airJ. Hazard. Mater.446130686

[114] [114] Guillard C, Bui T H, Felix C, Moules V, Lina B and Lejeune P 2008 Microbiological disinfection of water and air by photocatalysisC. R. Chim.11107–13

[115] [115] Han J Y, Park S H and Kang D H 2023 Effects of plasma bubble-activated water on the inactivation against foodborne pathogens on tomatoes and its wash waterFood Control144109381

[116] [116] Huo Z Y, Du Y, Chen Z, Wu Y H and Hu H Y 2020 Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: a state-of-the-art reviewWater Res.173115581

[117] [117] Vzquez-Lpez A, Ao X, Del Ro Saez J S and Wang D Y 2023 Triboelectric nanogenerator (TENG) enhanced air filtering and face masks: recent advancesNano Energy114108635

[118] [118] Dai K R, Huo Z Y, Miao X Y, Xiong P X, Zhang H, Wang X F, You Z and Kim S W 2023 Self-powered triboelectric functional devices and microsystems in health-care applications: an energy perspectiveEnergyChem5100109

[119] [119] Wang L, Feng Y J, Wang K Y and Liu G H 2021 Solar water sterilization enabled by photothermal nanomaterialsNano Energy87106158

[120] [120] Zhang Y, Xie M Y, Adamaki V, Khanbareh H and Bowen C R 2017 Control of electro-chemical processes using energy harvesting materials and devicesChem. Soc. Rev.467757–86

[121] [121] Suh I Y, Kim Y J, Zhao P, Cho D S, Kang M, Huo Z Y and Kim S W 2023 Self-powered microbial blocking textile driven by triboelectric chargesNano Energy110108343

[122] [122] Ding W B, Zhou J F, Cheng J, Wang Z Z, Guo H Y, Wu C S, Xu S X, Wu Z Y, Xie X and Wang Z L 2019 TriboPump: a low-cost, hand-powered water disinfection systemAdv. Energy Mater.91901320

[123] [123] Polyzos K A, Konstantelias A A and Falagas M E 2015 Risk factors for cardiac implantable electronic device infection: a systematic review and meta-analysisEuropace17767–77

[124] [124] Baman T S, Gupta S K, Valle J A and Yamada E 2009 Risk factors for mortality in patients with cardiac device-related infectionCirc. Arrhythmia Electrophysiol.2129–34

[125] [125] Huo Z Y, Kim Y J, Chen Y Y, Song T Y, Yang Y, Yuan Q B and Kim S W 2023 Hybrid energy harvesting systems for self-powered sustainable water purification by harnessing ambient energyFront. Environ. Sci. Eng.17118

[126] [126] Ibrahim A, Jain M, Salman E, Willing R and Towfighian S 2019 A smart knee implant using triboelectric energy harvestersSmart Mater. Struct.28025040

[127] [127] Jin Z H, Zhao F Z, Li L W and Wang Y C 2023 Tribo-sanitizer: a portable and self-powered UV device for enhancing food safetyNano Energy115108675

[128] [128] Zheng Q, Shi B J, Fan F R, Wang X X, Yan L, Yuan W W, Wang S H, Liu H, Li Z and Wang Z L 2014In vivopowering of pacemaker by breathing-driven implanted triboelectric nanogeneratorAdv. Mater.265851–56

[129] [129] Jiao P C 2021 Emerging artificial intelligence in piezoelectric and triboelectric nanogeneratorsNano Energy88106227

[130] [130] Chen C, Wen Z, Shi J H, Jian X H, Li P Y, Yeow J T W and Sun X H 2020 Micro triboelectric ultrasonic device for acoustic energy transfer and signal communicationNat. Commun.114143

[131] [131] Huo Z Y, Lee D M, Jeong J M, Kim Y J, Kim J, Suh I Y, Xiong P X and Kim S W 2022 Microbial disinfection with supercoiling capacitive triboelectric nanogeneratorAdv. Energy Mater.122103680

[132] [132] Liu L, Zhou L L, Zhang C G, Zhao Z H, Li S X, Li X Y, Yin X, Wang J and Wang Z L 2021 A high humidity-resistive triboelectric nanogeneratorviacoupling of dielectric material selection and surface-charge engineeringJ. Mater. Chem.A921357–65

Tools

Get Citation

Copy Citation Text

Kwon Yong Hyun, Meng Xiangchun, Xiao Xiao, Suh In-Yong, Kim Daun, Lee Jaehan, Kim Sang-Woo. Triboelectric energy harvesting technology for self-powered personal health management[J]. International Journal of Extreme Manufacturing, 2025, 7(2): 22005

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Mar. 27, 2024

Accepted: May. 29, 2025

Published Online: May. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ad92c7

Topics