Journal of Quantum Optics, Volume. 27, Issue 4, 288(2021)
Study on Environmental Magnetic Field Compensation Using Optical Memory Readout Signal in Atomic Ensemble
[1] [1] KIMBLE H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030. DOI: 10.1038/nature07127.
[2] [2] WEHNER S, ELKOUSS D, HANSON R. Quantum internet: A vision for the road ahead[J]. Science, 2018, 362(6412): 1-9. DOI: 10.1126/science.aam9288.
[3] [3] DUAN L M, LUKION M D, CIRAC J I, ZOLLER P. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(22): 413-418. DOI: 10.1038/35106500.
[4] [4] SANGOUARD N, SIMON C, DE RIEDMATTEN H, et al. Quantum repeaters based on atomic ensembles and linear optics[J]. Reviews of Modern Physics, 2011, 83(1): 33-80. DOI: 10.1103/RevModPhys.83.33.
[5] [5] HELLER L, FARRERA P, HEINZE G, et al. Cold-Atom Temporally Multiplexed Quantum Memory with Cavity-Enhanced Noise Suppression[J]. Physical Review Letters, 2020, 124(21): 1-6. DOI: 10.1103/ PhysRevLett.124.210504.
[6] [6] SHI B S, DING D S, ZHNG W, et al. Raman protocol-based quantum memories[J]. Acta Phys Sin, 2019, 68(3): 1-18. DOI: 10.7498/aps.68.20182215.
[7] [7] YU Y, MA F, LUO X Y, et al. Entanglement of two quantum memories via fibres over dozens of kilometres[J]. Nature, 2020, 578(7794): 240-245. DOI: 10.1038/s41586-020-1976-7.
[8] [8] LIU X, HU J, LI Z F, et al. Heralded entanglement distribution between two absorptive quantum memories[J]. Nature, 2021, 594(7861): 41-45. DOI: 10.1038/s41586-021-03505-3.
[9] [9] SIMON C. Towards a global quantum network[J]. Nat Photonics, 2017, 11(11): 678-680. DOI: 10.1038/s41566-017-0032-0.
[10] [10] MATSUKEVICH D N, CHANELIERE T, BHATTACHARYA M, et al. Entanglement of a photon and a collective atomic excitation[J]. Phys Rev Lett, 2005, 95(4): 1-4. DOI: 10.1103/PhysRevLett.95.040405.
[11] [11] DE RIEDMATTEN H, LAURAT J, CHOU C W, et al. Direct measurement of decoherence for entanglement between a photon and stored atomic excitation[J]. Phys Rev Lett, 2006, 97(11): 1-4. DOI: 10.1103/PhysRevLett.97.113603.
[12] [12] CHEN S, CHEN Y A, ZHAO B, et al. Demonstration of a stable atom-photon entanglement source for quantum repeaters[J]. Phys Rev Lett, 2007, 99(18): 1-4. DOI: 10.1103/PhysRevLett.99.180505.
[13] [13] DING D S, ZHANG W, ZHOU Z Y, et al. Raman quantum memory of photonic polarized entanglement[J]. Nat Photonics, 2015, 9(5): 332-338. DOI: 10.1038/nphoton.2015.43.
[14] [14] WU Y, TIAN L, XU Z, et al. Simultaneous generation of two spin-wave-photon entangled states in an atomic ensemble[J]. Physical Review A, 2016, 93(5): 1-8. DOI: 10.1103/PhysRevA.93.052327.
[15] [15] ZHAO B, CHEN Z B, CHEN Y A, et al. Robust creation of entanglement between remote memory qubits[J]. Phys Rev Lett, 2007, 98(24): 1-4. DOI: 10.1103/PhysRevLett.98.240502.
[16] [16] CHEN Z B, ZHAO B, CHEN Y A, et al. Fault-tolerant quantum repeater with atomic ensembles and linear optics[J]. Physical Review A, 2007, 76(2): 1-12. DOI: 10.1103/PhysRevA.76.022329.
[17] [17] VERNAZ Gris P, HUANG K, CAO M, et al. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble[J]. Nat Commun, 2018, 9(1): 363. DOI: 10.1038/s41467-017-02775-8.
[18] [18] WANG Y, LI J, ZHANG S, et al. Efficient quantum memory for single-photon polarization qubits[J]. Nat Photonics, 2019, 13(5): 346-351. DOI: 10.1038/s41566-019-0368-8.
[19] [19] YANG S J, WANG X J, BAO X H, PAN J W. An efficient quantum light-matter interface with sub-second lifetime[J]. Nat Photonics, 2016, 10(6): 381-384. DOI: 10.1038/nphoton.2016.51.
[20] [20] BAO X H, REINGRUBER A, DIETRICH P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity[J], Nature Physics, 2012, 8(7): 517-521. DOI: 10.1038/nphys2324.
[21] [21] YANG S J, WANG X J, LI J, et al. Highly Retrievable Spin-Wave-Photon Entanglement Source[J]. Phys Rev Lett, 2015, 114: 210501. DOI: 10.1103/physrevlett.114.210501.
[22] [22] TIAN L, XU Z, CHEN L, et al. Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks[J]. Phys Rev Lett, 2017, 119(13): 1-7. DOI: 10.1103/PhysRevLett.119.130505.
[23] [23] YAN H, ZHANG S, CHEN J F, et al. Generation of narrow-band hyperentangled nondegenerate paired photons[J]. Phys Rev Lett, 2011, 106(3): 1-4. DOI: 10.1103/PhysRevLett.106.033601.
[24] [24] LIAO K, YAN H, HE J, et al. Subnatural-linewidth polarization-entangled photon pairs with controllable temporal length[J]. Phys Rev Lett, 2014, 112(24): 1-5. DOI: 10.1103/PhysRevLett.112.243602.
[25] [25] CLAUSER J F, HORNE M A, SHIMONY A, HOLT R A. Proposed Experiment to Test Local Hidden-Variable Theories[J]. Physical Review Letters, 1969, 23(15): 880-884. DOI: 10.1103/PhysRevLett.23.880.
[26] [26] ZHAO R, DUDIN Y O, JENKINS S D, et al. Long-lived quantum memory[J]. Nature Physics, 2008, 5(2): 100-104. DOI: 10.1038/nphys1152.
[27] [27] CHEN S, CHEN Y A, STRASSEL T, et al. Deterministic and storable single-photon source based on a quantum memory[J]. Phys Rev Lett, 2006, 97(17): 1-4. DOI: 10.1103/PhysRevLett.97.173004.
[28] [28] FARRERA P, HEINZE G, ALBRECHT B, et al. Generation of single photons with highly tunable wave shape from a cold atomic ensemble[J]. Nat Commun, 2016, 7: 1-6. DOI: 10.1038/ncomms13556.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Study on Environmental Magnetic Field Compensation Using Optical Memory Readout Signal in Atomic Ensemble[J]. Journal of Quantum Optics, 2021, 27(4): 288
Category:
Received: Oct. 6, 2021
Accepted: Aug. 7, 2025
Published Online: Aug. 7, 2025
The Author Email: (nmliuchao128@163.com)