Journal of Quantum Optics, Volume. 28, Issue 2, 114(2022)

Study of Phase Grating Induced by Spontaneous Coherence in Different Three-Level Systems

GUO Hong-ju1、* and FENG Ji-jun2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(39)

    [1] [1] HARRIS S E. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36-42. DOI: 10.1063/1.881806.

    [2] [2] FAN B X, NING J H, XIE M, et al. Coherent feedback induced transparency[J]. Optics Express, 2020, 28(19): 28243-28251. DOI: 10.1364/OE.404053.

    [3] [3] LONGDELL J J, FRAVAL E, SELLARS M J, et al. Stopped light with storage times greater than one second using electromagnetically induced transparency in a Solid[J]. Phys Rev Lett, 2005, 95(6): 063601. DOI: 10.1103/PhysRevLett.95.063601.

    [4] [4] WU Y, Saldana J, ZHU Y F. Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency[J]. Phys Rev A, 2003, 67(1): 013811. DOI: 10.1103/PhysRevA.67.013811.

    [5] [5] JING H, LIU X J, GE M L, et al. Correlated quantum memory: Manipulating atomic entanglement via electromagnetically induced transparency[J]. Phys Rev A, 2005, 71(1): 062336. DOI: 10.1103/PhysRevA.71.062336.

    [6] [6] ZHANG H, YUAN J, DONG S, et al. All-optical tunable high-order Gaussian beam splitter based on a periodic dielectric atomic structure[J]. Optics Express, 2021, 29(16): 25439. DOI: 10.1364/OE.428311.

    [7] [7] ZHANG H F, YUAN J P, DONG S C, et al. Observation of an electromagnetically induced grating in cold 85Rb atoms[J]. Applied Sciences, 2020, 10(17): 5740. DOI: 10.3390/app10175740.

    [8] [8] LING H Y, LI Y Q, XIAO M. Electromagnetically induced grating: Homogeneously broadened medium[J]. Phys Rev A, 1998, 57(2): 1338. DOI: 10.1103/PhysRevA.57.1338.

    [9] [9] BROWN A W, Xiao M. All-optical switching and routing based on an electromagnetically induced absorption grating[J]. Opt Lett, 2005, 30(7): 699. DOI: 10.1364/OL.30.000699.

    [10] [10] ShATRUGHUA K, MRINAL S. Double an integrable all optical switch for photonic integrated circuits[J]. Journal of the Optical Society of America B, 2021, 38(2): 611. DOI: 10.1364/JOSAB.403992.

    [11] [11] MAO J, WANG C, HONG T X, et al. Three-nanosecond-equal interval sub-pulse Nd: YAG laser with multi-step active Q-switching[J]. Chin Opt Lett, 2021, 19(7): 071404. DOI: 10.1364/COL.19.071404.

    [12] [12] CARDOSO G C, TABOSA J W R. Electromagnetically induced gratings in a degenerate open two-level system[J]. Phys Rev A, 2002, 65(3): 033803. DOI: 10.1103/PhysRevA.65.033803.

    [13] [13] MITSUNAGA M, IMOTO N. Observation of an electromagnetically induced grating in cold sodium atoms[J]. Phys Rev A, 1999, 59(6): 4773. DOI: 10.1103/PhysRevA.59.4773.

    [14] [14] BAJCSY M, ZIBROV A S, LUKIN M D. Stationary pulses of light in an atomic medium[J]. Nature, 2003, 426(12): 638. DOI: 10.48550/arXiv.quant-ph/0311092.

    [15] [15] PENG Y G. Optimal pulse sequence of quantum controlled not-gates via nuclear magnetic resonance realization[J]. Laser & Optoelectronics Progress, 2021, 58(1): 0127002. DOI: 10.3788/LOP202158.0127002.

    [16] [16] YUAN J, ZHANG H, WU C, et al. Tunable optical vortex array in a two-dimensional electromagnetically induced atomic lattice[J]. Optics Letters, 2021, 46(17): 4184. DOI: 10.1364/OL.432036.

    [17] [17] KOHNO T, SUZUKI S, SHIMIZU K. Observation of a coherence loss of an atomic wave scattered from the optical potential in a Talbot-Lau atom interferometer[J]. Phys Rev A, 2007, 76(5): 053624. DOI: 10.1103/PhysRevA.76.053624.

    [18] [18] TALUKDAR I, SHRESTHA R, SUMMY G S. Sub-Fourier characteristics of a δ-kicked-rotor resonance[J]. Phys Rev Lett, 2010, 105(5): 054103. DOI: 10.1103/PhysRevLett.105.054103.

    [19] [19] RASEL E M, OBERTHALER M K, BATELAAN H, et al. Atom wave interferometry with diffraction gratings of light[J]. Phys Rev Lett, 1995, 75(14): 2633. DOI: 10.1103/PhysRevLett.75.2633.

    [20] [20] PETER Y, STEPHANE G, EMERIC DE C. Double-modulation CPT cesium compact clock[J]. Journal of Physics Conference Series, 2016, 723(1): 012012. DOI: 10.1088/1742-6596/723/1/012012.

    [21] [21] ZHANG Y Q, WU Z K, BELIC M R, et al. Photonic floquet topological Insulators in atomic ensembles[J]. Laser Photonics Rev, 2015, 9(3): 331. DOI: 10.1002/lpor.201400428.

    [24] [24] XIE B, CAI X, XIAO Z H. Electromagnetically induced phase grating controlled by spontaneous emission[J]. Opt Commun, 2012, 285(2): 133-135. DOI: 10.1016/j.optcom.2011.07.083.

    [25] [25] XIAO Z H, SHIN S G, KIM K. An electromagnetically induced grating by microwave modulation[J]. J Phys B: At Mol Opt Phys, 2010, 43(16): 161004. DOI: 10.1088/0953-4075/43/16/161004.

    [26] [26] YUAN J,DONG S, WU C, et al. Optically tunable grating in a V+Ξconfiguration involving a Rydberg state[J]. Optics Express, 2020, 28(16): 23820. DOI: 10.1364/OE.400618.

    [27] [27] JAVANAINEN J. Effect of state superpositions created by spontaneous emission on laser-driven transitions[J]. Europhys Lett, 1992, 17(5): 407. DOI: 10.1209/0295-5075/17/5/005.

    [28] [28] ZHOU P, SWAIN S. Ultranarrow spectral lines via quantum interference[J]. Phys Rev Lett, 1996, 77(19): 3995. DOI: 10.1103/PhysRevLett.77.3995.

    [29] [29] WHITLEY R M, STROUD C R. Double optical resonance[J]. Phys Rev A, 1976, 14(4): 1498. DOI: 10.1103/PhysRevA.14.1498.

    [30] [30] FICEK Z, DALTON B J, KNIGHT P L. Effect of vacuum-induced coherence on lasing without inversion in an equispaced three-level ladder system[J]. Phys Rev A, 1995, 51(5): 4062. DOI: 10.1103/PhysRevA.51.4062.

    [31] [31] XIA H R, YE C Y, ZHU S Y. Experimental Observation of Spontaneous Emission Cancellation[J]. Phys Rev Lett, 1996, 77(6): 1032. DOI: 10.1103/PhysRevLett.77.1032.

    [32] [32] FICEK Z, SWAIN S. Simulating quantum interference in a three-level system with perpendicular transition dipole moments[J]. Phys Rev A, 2004, 69(2): 023401. DOI: 10.1103/PhysRevA.69.023401.

    [33] [33] MENON S, AGRWAL G S. Effects of spontaneously generated coherence on the pump-probe response of a Λ system[J]. Phys Rev A, 1998, 57(5): 4014. DOI: 10.1103/PhysRevA.57.4014.

    [34] [34] ZHOU P, SWAIN S. Quantum interference in probe absorption: narrow resonances, transparency, and gain without population inversion[J]. Phys Rev Lett, 1997, 78(5): 832. DOI: 10.1103/PhysRevLett.78.832.

    [35] [35] PASPALAKIS E, GONG S Q, KNIGHT P L. Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom[J]. Opt Commun, 1998, 152(6): 293. DOI: 10.1016/S0030-4018(98)00179-5.

    [36] [36] XU W H, WU J H, GAO J Y. System[J]. Phys Rev A, 2002, 66(6): 063812. DOI: 10.1103/PhysRevA.66.063812.

    [37] [37] ANTON M A, CALDERON O G, CARRENO F. Spontaneously generated coherence effects in a laser-driven four-level atomic system[J]. Phys Rev A, 2005, 72(2): 023809. DOI: 10.1103/PhysRevA.72.023809.

    [38] [38] LI J H, YANG X X. Enhanced narrow spectral line and double electromagnetically induced two-photon transparency induced by double dark resonances[J]. The European Physical Journal D, 2007, 41(3): 563. DOI: 10.1140/epjd/e2006-00258-0.

    [39] [39] PASPALAKIS E, KYLSTRA N J, KNIGHT P L. Transparency of a short laser pulse via decay interference in a closed V-type system[J]. Phys Rev A, 2000, 61(4): 045802. DOI: 10.1103/PhysRevA.61.045802.

    [40] [40] NIU Y P, GONG S Q. Enhancing Kerr nonlinearity via spontaneously generated coherence[J]. Phys Rev A, 2006, 73(5): 053811. DOI: 10.1103/PhysRevA.73.053811.

    Tools

    Get Citation

    Copy Citation Text

    GUO Hong-ju, FENG Ji-jun. Study of Phase Grating Induced by Spontaneous Coherence in Different Three-Level Systems[J]. Journal of Quantum Optics, 2022, 28(2): 114

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 25, 2021

    Accepted: --

    Published Online: Oct. 14, 2022

    The Author Email: GUO Hong-ju (guohongju@163.com)

    DOI:10.3788/jqo20222802.0401

    Topics