Laser Technology, Volume. 46, Issue 1, 38(2022)
Review of quantum sources based on spontaneous parametric down-conversion
[1] [1] HUO M R, QIN J L, SUN Y R, et al. Analysis on phase-matching relations in PPKTP crystal[J]. Journal of Shanxi University (Natural Science Edition),2018, 41(2):356-361(in Chinese).
[2] [2] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046.
[3] [3] KWIAT P G, MATTLE K, WEINFURTER H, et al. New high-intensity source of polarization-entangled photon pairs[J]. Physical Review Letters, 1995, 75(24): 4337-4341.
[4] [4] CHEN J, PEARLMAN A J, LING A, et al. A versatile waveguide source of photon pairs for chip-scale quantum information processing[J]. Optics Express, 2009, 17(8): 6727-6740.
[5] [5] CAO Y, LI Y H, ZOU W J, et al. Bell test over extremely high-loss channels: Towards distributing entangled photon pairs between earth and the moon[J]. Physical Review Letters, 2018, 120(14): 140405.
[6] [6] OU Z Y, MANDEL L. Violation of Bell’s inequality and classical probability in a two-photon correlation experiment[J]. Physical Review Letters, 1988, 61(1): 50-53.
[7] [7] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarization-entangled photons[J]. Physical Review, 1999, A60(2): R773-R776.
[8] [8] ALTEPETER J B, JEFFREY E R, KWIAT P G. Phase-compensated ultra-bright source of entangled photons[J]. Optics Express, 2005, 13(22): 8951-8959.
[9] [9] SHI B S, TOMITA A. Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer[J]. Physical Review, 2004, A69(1): 013803.
[10] [10] IKUTA R, KUSAKA Y, KITANO T, et al. Wide-band quantum interface for visible-to-telecommunication wavelength conversion[J]. Nature Communications, 2011(2): 537.
[11] [11] PAN J W. Quantum teleportation and multi-photon entanglement[J]. Fundamental of Quantum Information, 2001, C32(1):21-25.
[12] [12] MATTLE K, WEINFURTER H, KWIAT P G, et al. Dense coding in experimental quantum communication[J]. Physical Review Le-tters, 1996, 76(25): 4656-4659.
[13] [13] PAN J W, BOUWMEESTER D, WEINFURTER H, et al. Experimental entanglement swapping: Entangling photons that never interacted[J]. Physical Review Letters, 1998, 80(18): 3891-3894.
[14] [14] KIM Y H, KULIK S P, CHEKHOVA M V, et al. Experimental entanglement concentration and universal Bell-state synthesizer[J]. Physical Review, 2003, A67(1): 010301.
[15] [15] TAKEUCHI SHIGEKI. Beamlike twin-photon generation by use of type Ⅱ parametric downconversion[J]. Optics Letters, 2001, 26(11): 843-845.
[16] [16] NIU X L, HUANG Y F, XIANG G Y, et al. Beamlike high-brightness source of polarization-entangled photon pairs[J]. Optics Le-tters, 2008, 33(9): 968-970.
[17] [17] KIM T, FIORENTINO M, WONG F N C. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer[J]. Physical Review, 2006, A73(1): 012316.
[18] [18] FUJII G, NAMEKATA N, MOTOYA M, et al. Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-Ⅱ periodically poled lithium niobate waveguide[J]. Optics Express, 2007, 15(20): 12769-12776.
[19] [19] HONJO T, TAKESUE H, INOUE K. Generation of energy-time entangled photon pairs in 1.5μm band with periodically poled lithium niobate waveguide[J]. Optics Express, 2007, 15(4): 1679-1683.
[20] [20] MARTIN A, ISSAUTIER A, HERRMANN H, et al. A polarization entangled photon-pair source based on a type-Ⅱ PPLN waveguide emitting at a telecom wavelength[J]. New Journal of Physics, 2010, 12(10): 103005.
[21] [21] ECKSTEIN A, CHRIST A, MOSLEY P J, et al. Highly efficient single-pass source of pulsed single-mode twin beams of light[J]. Physical Review Letters, 2011, 106(1): 013603.
[22] [22] HARDER G, ANSARI V, BRECHT B, et al. An optimized photon pair source for quantum circuits[J]. Optics Express, 2013, 21(12): 13975-13985.
[23] [23] MAIN P, MOSLEY P J, DING W, et al. Hybrid microfiber-lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources[J]. Physical Review, 2016, A94(6): 063844.
[24] [24] ELKUS B S, ABDELSALAM K, RAO A, et al. Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides[J]. Optics Express, 2019, 27(26): 38521-38531.
[25] [25] CHENG X, SARIHAN M C, CHANG K Ch, et al. Design of spontaneous parametric down-conversion in integrated hybrid SixNy-PPLN waveguides[J]. Optics Express, 2019, 27(21): 30773-30787.
[26] [26] KUO P S, VERMA V B, WOO N S. Demonstration of a polarization-entangled photon-pair source based on phase-modulated PPLN[J]. OSA Continuum, 2020, 3(2): 295-304.
[27] [27] ZHAO J, MA Ch, RUSING M, et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides[J]. Physical Review Letters, 2020, 124(16): 163603.
[28] [28] LIU Y C, GUO D , REN K Q, et al. Observation of frequency-uncorrelated photon pairs generated by counter-propagating spontaneous parametric down-conversion[J]. Scientific Reports, 2021, 11(1): 12628.
[29] [29] STEINLECHNER F, TROJEK P, JOFRE M, et al. A high-brightness source of polarization-entangled photons optimized for applications in free space[J]. Optics Express, 2012, 20(9): 9640-9649.
[30] [30] LU Ch Y, ZHOU X Q, GHNE O, et al. Experimental entanglement of six photons in graph states[J]. Nature Physics, 2007, 3(2): 91-95.
[31] [31] LU Ch Y, GAO W B, GHNE O, et al. Demonstrating anyonic fractional statistics with a six-qubit quantum simulator[J]. Physical Review Letters, 2009, 102(3): 030502.
[32] [32] GAO W B, XU P, YAO X C, et al. Experimental realization of a controlled-not gate with four-photon six-qubit cluster states[J]. Physical Review Letters, 2010, 104(2): 020501.
[33] [33] GAO W B, LU Ch Y, YAO X C, et al. Experimental demonstration of a hyper-entangled ten-qubit Schrdinger cat state[J]. Nature Physics, 2010, 6(5): 331-335.
[34] [34] HUANG Y F, LIU B H, PENG L, et al. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state[J]. Nature Communications, 2011(2): 546.
[35] [35] YAO X C, WANG T X, XU P, et al. Observation of eight-photon entanglement[J]. Nature Photonics, 2012, 6(4): 225-228.
[36] [36] ZHANG C, HUANG Y F, WANG Z, et al. Experimental Greenberger-Horne-Zeilinger-type six-photon quantum nonlocality[J]. Physical Review Letters, 2015, 115(26): 260402.
[37] [37] ZHANG C, HUANG Y F, ZHANG C J, et al. Generation and applications of an ultrahigh-fidelity four-photon Greenberger-Horne-Zeilinger state[J]. Optics Express, 2016, 24(24): 27059-27069.
[38] [38] CHEN L K, LI Zh D, YAO X C, et al. Observation of ten-photon entanglement using thin BiB3O6 crystals[J]. Optica, 2017, 4(1): 77-83.
[39] [39] LIU X, HU J, LI Z F, et al. Heralded entanglement distribution between two absorptive quantum memories[J]. Nature, 2021, 594(7861): 41-45.
[40] [40] ROSSI A, VALLONE G, CHIURI A, et al. Multipath entanglement of two photons[J]. Physical Review Letters, 2009, 102(15): 153902.
[41] [41] HU X M, CHEN J Sh, LIU B H, et al. Experimental test of compatibility-loophole-free contextuality with spatially separated entangled qutrits[J]. Physical Review Letters, 2016, 117(17): 170403.
[42] [42] HU X M, XING W B, LIU B H, et al. Efficient generation of high-dimensional entanglement through multipath down-conversion[J]. Physical Review Letters, 2020, 125(9): 090503.
[43] [43] LI L, LIU Z X, REN X F, et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 2020, 368(6498): 1487-1490.
[44] [44] OU Z Y, LU Y J. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons[J]. Physical Review Letters, 1999, 83(13): 2556-2559.
[45] [45] LU Y J, OU Z Y. Optical parametric oscillator far below threshold: Experiment versus theory[J]. Physical Review, 2000, A62(3): 033804.
[46] [46] WANG H B, HORIKIRI T, KOBAYASHI T. Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion[J]. Physical Review, 2004, A70(4): 043804.
[47] [47] KUKLEWICZ C E, WONG F N, SHAPIRO J H. Time-bin-modulated biphotons from cavity-enhanced down-conversion[J]. Physical Review Letters, 2006, 97(22): 223601.
[48] [48] SCHOLZ M, KOCH L, BENSON O. Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion[J]. Physical Review Letters, 2009, 102(6): 063603.
[49] [49] SCHOLZ M, KOCH L, ULLMANN R, et al. Single-mode operation of a high-brightness narrow-band single-photon source[J]. Applied Physics Letters, 2009, 94(20): 201105.
[50] [50] SCHOLZ M, WOLFGRAMM F, HERZOG U, et al. Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold[J]. Applied Physics Letters, 2007, 91(19): 191104.
[51] [51] HAASE A, PIRO N, ESCHNER J, et al. Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction[J]. Optics Letters, 2009, 34(1): 55-57.
[52] [52] BAO X H, QIAN Y, YANG J, et al. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories[J]. Physical Review Letters, 2008, 101(19): 190501.
[53] [53] YANG J, BAO X H, ZHANG H, et al. Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources[J]. Physical Review, 2009, A80(4): 042321.
[54] [54] ZHANG H, JIN X M, YANG J, et al. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion[J]. Nature Photonics, 2011, 5(10): 628-632.
[55] [55] DAI H N, ZHANG H, YANG Sh J, et al. Holographic storage of biphoton entanglement[J]. Physical Review Letters, 2012, 108(21): 210501.
[56] [56] ZHAO T M, ZHANG H, YANG J, et al. Entangling different-color photons via time-resolved measurement and active feed forward[J]. Physical Review Letters, 2014, 112(10): 103602.
[57] [57] PRAKASH V, BIANCHET L C, CUAIRAN M T, et al. Narrowband photon pairs with independent frequency tuning for quantum light-matter interactions[J]. Optics Express, 2019, 27(26): 38463-38478.
[58] [58] POLYAKOV S V, MULLER A, FLAGG E B, et al. Coalescence of single photons emitted by disparate single-photon sources: The example of inas quantum dots and parametric down-conversion sources[J]. Physical Review Letters, 2011, 107(15): 157402.
[59] [59] SERI A, LENHARD A, RIELNDER D, et al. Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory[J]. Physical Review, 2017, X7(2): 021028.
[60] [60] FEKETE J, RIELNDER D, CRISTIANI M, et al. Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks[J]. Physical Review Letters, 2013, 110(22): 220502.
[61] [61] MARING N, LAGO-RIVERA D, LENHARD A, et al. Quantum frequency conversion of memory-compatible single photons from 606nm to the telecom C-band[J]. Optica, 2018, 5(5): 507-513.
Get Citation
Copy Citation Text
LIU Xiyu, CUI Yuqing, LIU Jin, ZHAO Tianming. Review of quantum sources based on spontaneous parametric down-conversion[J]. Laser Technology, 2022, 46(1): 38
Category:
Received: Jul. 2, 2021
Accepted: --
Published Online: Feb. 28, 2022
The Author Email: ZHAO Tianming (zhaotm@scnu.edu.cn)