Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1612001(2025)

Dual-Branch 3D Surface Reconstruction Method Based on Gradient Fields

Xuejiao Zhang, Niannian Chen*, Ling Wu, and Yong Fan
Author Affiliations
  • School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan , China
  • show less
    Figures & Tables(13)
    Framework of the DS-ResUNet
    Surface shapes of random initial matrices with different sizes
    Surface visualization under different noise conditions.(a) Ground truth; (b) surface with Gaussian noise; (c) surface with abnormal noise; (d) surface with mixed noise (Gaussian noise+abnormal noise)
    Comparison of simulation data test results and errors of three methods (SLI, DUNet, DS-ResUNet) with initial matrix sizes of 8×8 and 2×2. (a)(e) Ground truth corresponding to initial matrix size of 8×8; (b) result of SLI; (c) result of DUNet; (d) result of DS-ResUNet; (f) error of SLI; (g) error of DUNet; (h) error of DS-ResUNet; (i)(m) ground truth corresponding to initial matrix size of 2×2; (j) result of SLI; (k) result of DUNet; (l) result of DS-ResUNet; (n) error of SLI; (o) error of DUNet; (p) error of DS-ResUNet
    The facial loss change graph of each model during the network training process
    Comparison of 3D surface reconstruction results and errors in practical scenarios. (a) Result of interferometer measurement; (b) result of SLI; (c) result of DUNet; (d) result of DS-ResUNet; (e) error of SLI; (f) error of DUNet; (g) error of DS-ResUNet
    • Table 1. Comparison of MSE and SSIM metrics for different methods on the 32 pixel×32 pixel dataset

      View table

      Table 1. Comparison of MSE and SSIM metrics for different methods on the 32 pixel×32 pixel dataset

      Noise typeMSESSIM
      SLISouthWellDUNetProposed methodSLISouthWellDUNetProposed method
      No noise0.00910.01980.02760.00240.99100.95760.97570.9881
      Gaussian noise0.05790.06670.06470.03360.93770.94120.95230.9555
      Impulse noise0.09000.08450.01450.00130.93270.94470.96840.9856
      Mixed noise0.54930.51310.09420.03750.89860.95260.96060.9670
      Average0.17660.17100.05030.01870.94000.94900.96420.9741
    • Table 2. Comparison of rRMSE and rPV metrics for different methods on the 32 pixel×32 pixel dataset

      View table

      Table 2. Comparison of rRMSE and rPV metrics for different methods on the 32 pixel×32 pixel dataset

      Noise typerRMSE /10-15rPV
      SLISouthWellDUNetProposed methodSLISouthWellDUNetProposed method
      No noise29.9529.833.513.280.02200.03180.06650.0169
      Gaussian noise31.4630.313.213.130.09610.09440.08840.0589
      Impulse noise30.9531.643.593.200.24460.19930.07320.0237
      Mixed noise29.5730.003.283.100.29170.23880.07750.0424
      Average30.4830.533.403.180.16360.14110.07640.0355
    • Table 3. Comparison of MSE and SSIM metrics for different methods on the 128 pixel×128 pixel dataset

      View table

      Table 3. Comparison of MSE and SSIM metrics for different methods on the 128 pixel×128 pixel dataset

      Noise typeMSESSIM
      SLISouthWellDUNetProposed methodSLISouthWellDUNetProposed method
      No noise0.000040.000080.01790.00310.99990.99980.95030.9880
      Gaussian noise0.06580.06040.05460.03380.83290.84850.93720.9552
      Impulse noise0.00960.00890.01210.00140.96260.96610.93880.9867
      Mixed noise0.18800.17310.10970.04140.81360.83010.94070.9637
      Average0.06590.06060.04860.01990.90230.91110.94180.9734
    • Table 4. Comparison of rRMSE and rPV metrics for different methods on the 128 pixel×128 pixel dataset

      View table

      Table 4. Comparison of rRMSE and rPV metrics for different methods on the 128 pixel×128 pixel dataset

      Noise typerRMSE /10-14rPV
      SLISouthWellDUNetProposed methodSLISouthWellDUNetProposed method
      No noise32.9831.614.593.990.00150.00220.06600.0183
      Gaussian noise34.2833.204.784.530.12150.11390.08030.0596
      Impulse noise34.1135.515.154.380.08340.06940.07900.0215
      Mixed noise33.1237.584.604.330.19430.16610.07390.0464
      Average33.6234.474.784.310.10020.08790.07480.0365
    • Table 5. Ablation study on the 32 pixel×32 pixel dataset

      View table

      Table 5. Ablation study on the 32 pixel×32 pixel dataset

      ModelGroupAFFLgradientMSESSIMrRMSE /10-15rPV
      DS-ResUNet00.02790.95973.300.0564
      10.02410.96473.200.0516
      20.01970.97173.280.0384
      30.01870.97413.180.0355
      DUNet40.12680.90833.790.1372
      50.05030.96423.400.0764
    • Table 6. Ablation study on the 128 pixel×128 pixel dataset

      View table

      Table 6. Ablation study on the 128 pixel×128 pixel dataset

      ModelGroupAFFLgradientMSESSIMrRMSE /10-14rPV
      DS-ResUNet00.08540.91314.800.1460
      10.03130.94924.410.0765
      20.07290.94405.050.0662
      30.01990.97344.310.0365
      DUNet40.16050.85125.360.2173
      50.04860.94184.780.0748
    • Table 7. Comparison of MSE, SSIM, rRMSE, and rPV for different methods

      View table

      Table 7. Comparison of MSE, SSIM, rRMSE, and rPV for different methods

      MethodMSE /10-4SSIMrRMSE /10-4rPV
      SLI2.95170.78510.75920.4522
      DUNet5.26470.69503.01040.6726
      DS-ResUNet2.46650.81791.89750.4158
    Tools

    Get Citation

    Copy Citation Text

    Xuejiao Zhang, Niannian Chen, Ling Wu, Yong Fan. Dual-Branch 3D Surface Reconstruction Method Based on Gradient Fields[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1612001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Dec. 12, 2024

    Accepted: Mar. 12, 2025

    Published Online: Aug. 11, 2025

    The Author Email: Niannian Chen (chenniannian@swust.edu.cn)

    DOI:10.3788/LOP242414

    CSTR:32186.14.LOP242414

    Topics