Acta Optica Sinica, Volume. 44, Issue 18, 1800004(2024)
Observation Simulation and Metrics Demonstration of FY Third-Generation Polar-Orbiting Spaceborne Wind Measurement Lidar (Invited)
[1] James E P, Benjamin S G, Marquis M. A unified high-resolution wind and solar dataset from a rapidly updating numerical weather prediction model[J]. Renewable Energy, 102, 390-405(2017).
[11] Wang Z J, Liu Z S, Liu L P et al. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis[J]. Applied Optics, 49, 6960-6978(2010).
[12] Liu Z S, Wang Z J, Wu S H et al. Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar[J]. Optical Engineering, 48, 066002(2009).
[15] Emmitt G D. Combining direct and coherent detection for Doppler wind lidar[J]. Proceedings of SPIE, 5575, 31-37(2004).
[19] Itabe T, Mizutani K, Ishizu M et al. ISS/JEM-borne coherent Doppler lidar program to measure the wind from space[J]. Proceedings of SPIE, 4153, 412-419(2001).
[22] Reitebuch O. The spaceborne wind lidar mission ADM-Aeolus[M]. Schumann U, 815-827(2012).
[23] Straume A G, Elfving A, Wernham D et al. ESA’s spaceborne lidar mission ADM-Aeolus; project status and preparations for launch[J]. EPJ Web of Conferences, 176, 04007(2018).
[24] Kanitz T, Lochard J, Marshall J et al. Aeolus first light: first glimpse[J]. Proceedings of SPIE, 11180, 111801R(2019).
[32] Lux O, Witschas B, Geiß A et al. Quality control and error assessment of the Aeolus L2B wind results from the Joint Aeolus Tropical Atlantic Campaign[J]. Atmospheric Measurement Techniques, 15, 6467-6488(2022).
[34] Kiriakidis P, Gkikas A, Papangelis G et al. The impact of using assimilated Aeolus wind data on regional WRF-Chem dust simulations[J]. Atmospheric Chemistry & Physics, 23, 4391-4417(2023).
[36] Abril-Gago J, Ortiz-Amezcua P, Bermejo-Pantaleón D et al. Validation activities of Aeolus wind products on the southeastern Iberian Peninsula[J]. Atmospheric Chemistry & Physics, 23, 8453-8471(2023).
[40] Martin A, Weissmann M, Cress A. Impact of assimilating Aeolus observations in the global model ICON: A global statistical overview[J]. Quarterly Journal of the Royal Meteorological Society, 149, 2962-2979(2023).
[41] Wernham D, Heliere A, Mason G et al. Aeolus-2 mission pre-development status[C], 767-770.
[42] Liu Z S, Liu B Y, Li Z G et al. Wind measurements with incoherent Doppler lidar based on iodine filters at night and day[J]. Applied Physics B, 88, 327-335(2007).
[45] Dai G Y, Wu S H, Long W R et al. Aerosol and cloud data processing and optical property retrieval algorithms for the spaceborne ACDL/DQ-1[J]. Atmospheric Measurement Techniques, 17, 1879-1890(2024).
[46] Hu J B, Wang X, Zhao S H et al. Spaceborne high spectral resolution lidar for atmospheric aerosols and clouds profiles measurement[J]. Acta Optica Sinica, 43, 1899901(2023).
[48] Wood S A, Jr, Emmitt G D, Greco S. DLSM: a coherent and direct detection lidar simulation model for simulating space-based and aircraft-based lidar winds[J]. Proceedings of SPIE, 4035, 2-12(2000).
[50] Frehlich R. Errors for space-based Doppler lidar wind measurements: definition, performance, and verification[J]. Journal of Atmospheric and Oceanic Technology, 18, 1749-1772(2001).
[51] Wu D, Tang J Y, Liu Z Y et al. Simulation of coherent Doppler wind lidar measurement from space based on CALIPSO lidar global aerosol observations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 122, 79-86(2013).
[52] Yu C R, Liu Z S, Bi D C et al. Comparison of simulated performance of filters in space-borne wind lidar system[J]. Chinese Journal of Quantum Electronics, 30, 615-620(2013).
[58] Zhang F R, Zhang S B, Wang L. Research on simulation design of spaceborne coherent wind lidar system[J]. Optical Technique, 47, 666-671(2021).
[59] Wu Y W. Simulation design and data processing for the satellite hybrid Doppler wind lidar[D](2018).
[60] Kang J H. Simulation and error analysis of spaceborne wind lidar based on incoherent technology[D](2023).
[61] Kang J H, Gao H Y, Liao S J et al. Simulation of spaceborne wind lidar based on Fizeau interferometer[J]. Chinese Journal of Lasers, 50, 2310002(2023).
[66] Bu Z C, Chen S Y, Zhang Y C et al. Error modeling and analysis on wind speed and direction for 2 μm space based coherent Doppler LIDAR[J]. Journal of Infrared and Millimeter Waves, 34, 465-470(2015).
[73] Liu B Y. Performance optimization and wind field retrieval for mobile wind lidar[D](2008).
[76] Zhang C L, Sun X J, Lu W et al. Relationship between wind observation accuracy and the ascending node of the Sun-synchronous orbit for the Aeolus-type spaceborne Doppler wind lidar[J]. Atmospheric Measurement Techniques, 14, 4787-4803(2021).
Get Citation
Copy Citation Text
Songhua Wu, Guangyao Dai, Wenrui Long, Kangwen Sun, Xiaochun Zhai, Na Xu, Jian Shang, Xiuqing Hu, Peng Zhang. Observation Simulation and Metrics Demonstration of FY Third-Generation Polar-Orbiting Spaceborne Wind Measurement Lidar (Invited)[J]. Acta Optica Sinica, 2024, 44(18): 1800004
Category: Reviews
Received: Apr. 2, 2024
Accepted: Jun. 7, 2024
Published Online: Sep. 11, 2024
The Author Email: Wu Songhua (wush@ouc.edu.cn)
CSTR:32393.14.AOS240800