Acta Optica Sinica, Volume. 39, Issue 3, 0315007(2019)

Scale Point Cloud Registration Algorithm in High-Dimensional Orthogonal Subspace Mapping

Yue Jiang1, Hongguang Huang1、*, Qin Shu1, Zhao Song2, and Zhirong Tang3
Author Affiliations
  • 1 School of Electrical Engineering and Information, Sichuan University, Chengdu, Sichuan 610065, China
  • 2 Southwest Institute of Technical Physics, Chengdu, Sichuan 610041, China
  • 3 College of Nuclear Technology and Automation Engineering, Chengdu University of Technology,Chengdu, Sichuan 610059, China
  • show less
    Figures & Tables(20)
    Flow chart of algorithm
    Initial state of point cloud with noise and without data loss. (a) Bunny; (b) Dragon
    Registration results of Bunny obtained by different algorithms with noise and without data loss. (a) OrthS; (b) GA+ICP; (c) GA+Scale-ICP; (d) CPD; (e) Go-ICP
    Registration results of Dragon obtained by different algorithms with noise and without data loss. (a) OrthS; (b) GA+ICP; (c) GA+Scale-ICP; (d) CPD; (e) Go-ICP
    Registration results of large-scale Dragon by different algorithms with Gaussian white noise of 50 dB. (a) OrthS; (b) GA+ICP; (c) GA+Scale-ICP; (d) CPD; (e) Go-ICP
    Initial state of point cloud with noise and data loss. (a) Bunny; (b) Dragon
    Registration results of Bunny obtained by different algorithms with noise and data loss. (a) OrthS; (b) OrthS+ICP; (c) OrthS+Scale-ICP; (d) CPD; (e) Go-ICP
    Registration results of Dragon obtained by different algorithms with noise and data loss. (a) OrthS; (b) OrthS+ICP; (c) OrthS+Scale-ICP; (d) CPD; (e) Go-ICP
    Registration effects under different noise environments. (a) 25 dB; (b) 20 dB; (c) 15 dB; (d) 10 dB
    Registration results. (a) Root mean square error; (b) registration time
    Initial state of affine point cloud. (a) Bunny; (b) Dragon
    Registration results of affine point cloud. (a)(c) OrthS; (b)(d) Scale-ICP
    Two sets of physical maps. (a) Cylinder; (b) shower gel
    Registration results of cylinder. (a) Initial state; (b) OrthS; (c) OrthS+ICP; (d) OrthS+Scale-ICP; (e) CPD; (f) Go-ICP
    Registration results of shower gel. (a) Initial state; (b) OrthS; (c) OrthS+ICP; (d) OrthS+Scale-ICP; (e) CPD; (f) Go-ICP
    • Table 1. Comparison of point cloud registration data with noise and without data loss

      View table

      Table 1. Comparison of point cloud registration data with noise and without data loss

      AlgorithmTime /sRMSE/mm
      BunnyDragonBunnyDragon
      OrthS3.65.30.47230.0008
      GA+ICP407.0330.50.47170.0008
      GA+Scale-ICP14.830.70.79670.0410
      CPD174.889.70.43540.0033
      Go-ICP50.727.70.90050.0220
    • Table 2. Comparison of point cloud registration data with Gaussian white noise of 50 dB

      View table

      Table 2. Comparison of point cloud registration data with Gaussian white noise of 50 dB

      AlgorithmOrthSGA+ICPGA+Scale-ICPCPDGo-ICP
      Time /s33.56243.9177.6454.137.0
      RMSE/mm6.821×10-40.00560.01250.00290.0388
    • Table 3. Comparison of point cloud registration data with noise and data loss

      View table

      Table 3. Comparison of point cloud registration data with noise and data loss

      AlgorithmTime /sR'MSE /mm
      BunnyDragonBunnyDragon
      OrthS2.84.200.47230.0011
      OrthS+ICP218.284.400.47140.0011
      OrthS+Scale-ICP5.99.890.67230.0048
      CPD133.770.100.40460.0035
      Go-ICP82.025.901.46910.0196
    • Table 4. Comparison of registration data between two registration algorithms

      View table

      Table 4. Comparison of registration data between two registration algorithms

      AlgorithmTime /sR'MSE /mm
      BunnyDragonBunnyDragon
      OrthS3.03.90.22050.0208
      Scale-ICP13.98.30.97300.0309
    • Table 5. Comparison of point cloud registration data

      View table

      Table 5. Comparison of point cloud registration data

      AlgorithmTime /sR'MSE /mm
      CylinderShower gelCylinderShower gel
      OrthS4.72.60.63682.9621
      OrthS+ICP184.2378.80.62442.9378
      OrthS+Scale-ICP7.14.90.642413.9816
      CPD36.157.03.08361.9082
      Go-ICP26.627.00.58173.0128
    Tools

    Get Citation

    Copy Citation Text

    Yue Jiang, Hongguang Huang, Qin Shu, Zhao Song, Zhirong Tang. Scale Point Cloud Registration Algorithm in High-Dimensional Orthogonal Subspace Mapping[J]. Acta Optica Sinica, 2019, 39(3): 0315007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Oct. 22, 2018

    Accepted: Nov. 19, 2018

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.3788/AOS201939.0315007

    Topics