Infrared and Laser Engineering, Volume. 54, Issue 6, 20240528(2025)

Infrared and visible image registration of low-voltage electrical equipment based on homography evaluation

Guangpan HUANG1, Linxuan ZHANG1,2, Feng REN3, Qingsong ZENG1, and Rui ZENG3
Author Affiliations
  • 1School of Electrical Engineering, Xinjiang University, Urumqi 830047, China
  • 2National Computer Integrated Manufacturing System (CIMS) Engineering Research Center, Tsinghua University, Beijing 100084, China
  • 3Xinjiang TBEA Automatic Equipment Co. Ltd., Changji 831100, China
  • show less
    References(30)

    [1] LIU T, LI G L, GAO Y. Fault diagnosis method of substation equipment based on You Only Look Once algorithm and infrared imaging[J]. Energy Reports, 8, 171-180(2022).

    [2] WANG L, XU C, WU H. Research on temperature difference character between visible light and infrared target and background[J]. Infrared and Laser Engineering, 53, 20240071(2024).

    [3] ZHANG M Z, HAN J Y, WANG B J et al. Identification method for infrared temperature measurement defects in power equipment under low-temperature environment[J]. High Voltage Engineering, 50, 2726-2733(2024).

    [4] FAN Y, LIU Q, YUAN D et al. Spatial and frequency domain feature decoupling for infrared and visible image fusion[J]. Infrared and Laser Engineering, 53, 1509001(2024).

    [5] ZHI Y, ZHU J J, LIU R et al. Registration of thermal infrared image and visible image based on featured contour quadrilateral[J]. Infrared and Laser Engineering, 50, 20200520(2021).

    [6] LIU K, SUN X W, SHI H L et al. Fen unsupervised learning based image registration of wind tunnel pressure sensitive paint image[J]. Acta Optica Sinica, 44, 0915002(2024).

    [8] [8] TONY L. Scale Invariant Feature Transfm [M]Burger W, Burge M J. Digital Image Processing, London: Springer, 2016: 609664.

    [10] [10] ETHAN R, VINCENT R, KURT K, et al. B: An efficient alternative to SIFT SURF [C]International Conference on Computer Vision, 2011: 25642571.

    [11] [11] PHILIPP L, PAUL E S, MARC P, et al. LightGlue: Local feature matching at light speed [C]2023 IEEECVF International Conference on Computer Vision (ICCV), IEEE, 2023: 1758117592.

    [12] [12] PAUL E S, DANIEL D, TOMASZ M, et al. SuperGlue: learning feature matching with graph neural wks[C]2020 IEEECVF Conference on Computer Vision Pattern Recogntion (CVPR), IEEE, 2019: 49374946.

    [13] [13] DANIEL D, TOMASZ M, REW R, et al. SuerPoint: Selfsupervised interest point detection deion [C]2018 IEEECVF Conference on Computer Vision Pattern Recogntion Wkshops (CVPRW), IEEE, 2018: 33712.

    [14] [14] SUN J M, SHEN Z H, WANG Y, et al. LoFTR: detectfree local feature matching with transfmers [C]2021 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2021: 89188927.

    [15] [15] ASHISH V, NOAM S, NIKI P, et al. Attention is all you need [C]Proceedings of the 31st International Conference on Neural Infmation Processing Systems, IEEE, 2017: 60006010.

    [19] LIU S C, YE N J, WANG C et al. Content aware unsupervised deep homography estimation and its extensions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 2849-2863(2023).

    [20] XU C, LI Q, SHEN Y et al. Edge-guided two-stage feature matching for infrared and visible image registration in electric power scenes[J]. Infrared Physics & Technology, 136, 104999(2024).

    [22] [22] LI S Y, WANG Z D, LIU Z C, et al. Moga: multider gated aggregation wk [C]International Conference on Learning Representations, 2022: 151.

    [24] [24] HU J, SHEN L, SUN G. Squeeze excitation wks [C]2018 IEEECVF Conference on Computer Vision Pattern Recognition, IEEE, 2018: 71327141.

    [25] [25] HAN D C, PAN X R, HAN Y Z, et al. FLatten Transfmer: vision transfmer using focused linear attention [C]2023 IEEECVF International Conference on Computer Vision (ICCV), 2023: 59385948.

    [27] [27] WANG Q L, WU B G, ZHU P F, et al. ECA: Efficient channel attention f deep convolutional neural wks [C]2020 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), 2020: 1153111539.

    [28] [28] KAREN S, REW Z. Very deep convolutional wks f largescale image recognition [C]International Conference on Learning Representations, 2015: 114.

    [29] [29] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning f image recognition [C]2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2016: 770778.

    Tools

    Get Citation

    Copy Citation Text

    Guangpan HUANG, Linxuan ZHANG, Feng REN, Qingsong ZENG, Rui ZENG. Infrared and visible image registration of low-voltage electrical equipment based on homography evaluation[J]. Infrared and Laser Engineering, 2025, 54(6): 20240528

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical imaging, display and information processing

    Received: Nov. 12, 2024

    Accepted: --

    Published Online: Jul. 1, 2025

    The Author Email:

    DOI:10.3788/IRLA20240528

    Topics