Laser Journal, Volume. 46, Issue 1, 75(2025)
Retinalvessel segmentation based on image fusion of the B-COSFIRE and phase congruency
[1] [1] Tan W, Yao X, Le T T, et al. The new era of retinal imaging in hypertensive patients[J]. The Asia-Pacific Journal of Ophthalmology, 2022, 11(2): 149-159.
[2] [2] Chen N, Zhu Z, Yang W, et al. Progress in clinical research and applications of retinal vessel quantification technology based on fundus imaging[J]. Frontiers in Bioengineering and Biotechnology, 2024, 12: 1329263.
[3] [3] Rehman A, Harouni M, Karimi M, et al. Microscopic retinal blood vessels detection and segmentation using support vector machine and K-nearest neighbors[J]. Microscopy research and technique, 2022, 85(5): 1899-1914.
[4] [4] Palanivel D A, Natarajan S, Gopalakrishnan S. Retinal vessel segmentation using multifractal characterization[J]. Applied Soft Computing, 2020, 94: 106439.
[6] [6] Li P, Qiu Z, Zhan Y, et al. Multi-scale Bottleneck Residual Network for Retinal Vessel Segmentation[J]. Journal of Medical Systems, 2023, 47(1): 102.
[7] [7] Rahmoune N, Rahmoune A. Segmentation and detection of the retinal vascular network using fast filtering[J]. International Journal of Signal and Imaging Systems Engineering, 2023, 12(4): 137-47.
[8] [8] Vanmathi C, Vincent D R, Manivannan S S, et al. Detection of Blood Vessels in Retinal Images using Line Tracking Algorithm[C]//International Conference on Intelligent Computing, Instrumentation and Control Technologies, July 5-6, 2019, Kannur, India. IEEE, 1: 967-974.
[9] [9] Madathil S, Padannayil S K. MC-DMD: A data-driven method for blood vessel enhancement in retinal images using morphological closing and dynamic mode decomposition[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(8): 5223-39.
[10] [10] Mahapatra S, Agrawal S, Mishro P K, et al. A novel framework for retinal vessel segmentation using optimal improved frangi filter and adaptive weighted spatial FCM[J]. Computers in Biology and Medicine, 2022, 147: 105770.
[12] [12] Azzopardi G, Strisciuglio N, Vento M, et al. Trainable COSFIRE filters for vessel delineation with application to retinal images[J]. Medical image analysis, 2015, 19(1): 46-57.
[13] [13] Zhang T, Wei L, Chen N, et al. Learning based multiscale feature fusion for retinal blood vessels segmentation[J]. Journal of Algorithms & Computational Technology, 2022, 16: 17483026211065369.
[14] [14] Mahapatra S, Agrawal S, Mishro P K, et al. A novel framework for retinal vessel segmentation using optimal improved frangi filter and adaptive weighted spatial FCM[J]. Computers in Biology and Medicine, 2022, 147: 105770.
[19] [19] Morrone M C, Owens R A. Feature detection from local energy[J]. Pattern Recognition Letters, 1987, 6(5): 303-313.
[20] [20] Venkatesh S, Owens R A. An Energy Feature Detection Scheme[C]//International Conferenceon Image Processing, IEEE International Conference on Image Processing: conference proceedings, September 5-8 1989, Singapore. 1989: 553-557.
[21] [21] Kovesi P. Phase congruency: A low-level image invariant[J]. Psychological Research, 2000, 64(2): 136-148.
[22] [22] Staal J, Abrmoff M D, Niemeijer M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE transactions on medical imaging, 2004, 23(4): 501-509.
[23] [23] Kazmi B M, Sultan F, Khan K, et al. Retinal Blood Vessels Segmentation Using Local Ternary Pattern[J]. Pakistan Journal of Engineering and Technology, 2021, 4(1): 218-223.
Get Citation
Copy Citation Text
ZHENG Qiao'e, ZHENG Chujun, HUANG Minxue. Retinalvessel segmentation based on image fusion of the B-COSFIRE and phase congruency[J]. Laser Journal, 2025, 46(1): 75
Category:
Received: Jul. 28, 2024
Accepted: Apr. 17, 2025
Published Online: Apr. 17, 2025
The Author Email: ZHENG Chujun (cjzheng@scnu.edu.cn)