Chinese Journal of Lasers, Volume. 51, Issue 4, 0402102(2024)
Review of Laser-Arc Hybrid Welding Process of Aluminum Alloys for New Energy Vehicles(Invited)
[1] Panigrahi S K, Jayaganthan R. A study on the mechanical properties of cryorolled Al-Mg-Si alloy[J]. Materials Science and Engineering: A, 480, 299-305(2008).
[2] Zeng F L, Wei Z L, Li J F et al. Corrosion mechanism associated with Mg2Si and Si particles in Al-Mg-Si alloys[J]. Transactions of Nonferrous Metals Society of China, 21, 2559-2567(2011).
[3] Lin S, Deng Y L, Tang J G et al. Microstructures and fatigue behavior of metal-inert-gas-welded joints for extruded Al-Mg-Si alloy[J]. Materials Science and Engineering: A, 745, 63-73(2019).
[4] Kumar A, Sundarrajan S. Effect of welding parameters on mechanical properties and optimization of pulsed TIG welding of Al-Mg-Si alloy[J]. The International Journal of Advanced Manufacturing Technology, 42, 118-125(2009).
[5] Wang J, Feng J C, Wang Y X. Microstructure of Al-Mg dissimilar weld made by cold metal transfer MIG welding[J]. Materials Science and Technology, 24, 827-831(2008).
[6] Guo J Z, Wang J F, Hao L J et al. Microstructure heterogeneity and mechanical properties of laser mirror welded joint of 2219 aluminum alloy[J]. Chinese Journal of Lasers, 50, 1602101(2023).
[7] Zhang P, Shi K K, Bian J J et al. Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al-Zn-Mg alloy[J]. Acta Materialia, 207, 116682(2021).
[8] Lee S H, Jung J G, Baik S I et al. Precipitation strengthening in naturally aged Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering: A, 803, 140719(2021).
[9] Esmaeili S, Lloyd D J, Poole W J. Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111[J]. Acta Materialia, 51, 3467-3481(2003).
[10] Zhang W K, He H, Xu C C et al. Precipitates dissolution, phase transformation, and re-precipitation-induced hardness variation in 6082-T6 alloy during MIG welding and subsequent baking[J]. JOM, 71, 2711-2720(2019).
[11] Zhang L, Li X Y, Nie Z R et al. Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al-Zn-Mg-Cu alloy[J]. Materials & Design, 92, 880-887(2016).
[12] Enz J, Riekehr S, Ventzke V et al. Fibre laser welding of high-alloyed Al-Zn-Mg-Cu alloys[J]. Journal of Materials Processing Technology, 237, 155-162(2016).
[13] Pinto H, Pyzalla A R, Hackl H et al. A comparative study of microstructure and residual stresses of CMT-, MIG- and laser-hybrid welds[J]. Materials Science Forum, 524/525, 627-632(2006).
[14] Xu G X, Wu C S, Ma X Z et al. Numerical analysis of welding residual stress and distortion in laser+GMAW hybrid welding of aluminum alloy T-joint[J]. Acta Metallurgica Sinica (English Letters), 26, 352-360(2013).
[15] Franciosa P, Serino A, Al Botros R et al. Closed-loop gap bridging control for remote laser welding of aluminum components based on first principle energy and mass balance[J]. Journal of Laser Applications, 31, 022416(2019).
[16] Wang Y, Shu L S, Geng S N et al. Status and development trend of laser welding technology for automotive body[J]. Chinese Journal of Lasers, 49, 1202004(2022).
[17] Qi X N, Di H S, Wang X N et al. Effect of secondary peak temperature on microstructure and toughness in ICCGHAZ of laser-arc hybrid welded X100 pipeline steel joints[J]. Journal of Materials Research and Technology, 9, 7838-7849(2020).
[18] Yan J, Gao M, Zeng X Y. Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding[J]. Optics and Lasers in Engineering, 48, 512-517(2010).
[19] Zhao T, Zhang X G. Research status and development on laser- arc hybrid welding of aluminum alloy[J]. Welding & Joining, 22-26, 69(2012).
[20] Zhang L Z, Wang X N, Chen X M et al. Effect of laser power on microstructure and properties of high strength Al-Mg-Si-Cu alloy laser-CMT hybrid welded joints[J]. Chinese Journal of Lasers, 50, 0402013(2023).
[21] Lee K D, Park K Y. A study on the process robustness of Nd: YAG laser-MIG hybrid welding of aluminum alloy 6061-T6[C](2003).
[22] Uchiumi S, Wang J B, Katayama S et al. Penetration and welding phenomena in YAG laser-MIG hybrid welding of aluminum alloy[C](2004).
[23] Zhang Y L, Liu J, Shi Y et al. Effect of current/voltage matching on stability of laser-arc hybrid welding process for aluminum alloy[J]. Transactions of the China Welding Institution, 39, 79-83, 132(2018).
[24] Zhang D F, Yang Y, Wang T J et al. Comparison of fiber laser-MIG arc hybrid and fiber laser welding of 6009 aluminum alloy[J]. Materials Review, 29, 121-124, 134(2015).
[25] Kah P, Salminen A, Martikainen J. The effect of the relative location of laser beam and arc in different hybrid welding processes[J]. Mechanics, 83, 68-74(2010).
[26] Zhao L, Sugino T, Arakane G et al. Influence of welding parameters on distribution of wire feeding elements in CO2 laser GMA hybrid welding[J]. Science and Technology of Welding and Joining, 14, 457-467(2009).
[27] Lei Z L, Li B W, Bi J et al. Influence of the laser thermal effect on the droplet transfer behavior in laser-CMT welding[J]. Optics & Laser Technology, 120, 105728(2019).
[28] Bunaziv I, Akselsen O M, Salminen A et al. Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy[J]. Journal of Materials Processing Technology, 233, 107-114(2016).
[29] Huang S A, Yang X Y, Chen H et al. Effect of droplet transfer on pore formation in laser-pulsed metal inert gas hybrid welding of A7N01P aluminum alloy[J]. Journal of Laser Applications, 32, 012011(2020).
[30] Zhao Y Q, Zhou X D, Liu T et al. Investigate on the porosity morphology and formation mechanism in laser-MIG hybrid welded joint for 5A06 aluminum alloy with Y-shaped groove[J]. Journal of Manufacturing Processes, 57, 847-856(2020).
[31] Lei Z L, Li B W, Zhu P G et al. Effect of wavelength on droplet transition behaviors in laser-CMT hybrid welding process[J]. Chinese Journal of Lasers, 45, 1002006(2018).
[32] Yan S H, Nie Y, Zhu Z T et al. Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al-Mg alloy joints[J]. Applied Surface Science, 298, 12-18(2014).
[33] Zhang C, Gao M, Zeng X Y. Influences of synergy effect between laser and arc on laser-arc hybrid welding of aluminum alloys[J]. Optics & Laser Technology, 120, 105766(2019).
[34] Han X H, Zhang Z Y, Ma G L et al. Effects of heat source angle on weld formation and porosity defects of laser-MIG hybrid welding of 6A01 aluminum alloy[J]. Chinese Journal of Lasers, 49, 0202020(2022).
[35] Chen M H, Xu J N, Xin L J et al. Comparative study on interactions between laser and arc plasma during laser-GTA welding and laser-GMA welding[J]. Optics and Lasers in Engineering, 85, 1-8(2016).
[36] Zhang C, Gao M, Jiang M et al. Effect of weld characteristic on mechanical strength of laser-arc hybrid-welded Al-Mg-Si-Mn aluminum alloy[J]. Metallurgical and Materials Transactions A, 47, 5438-5449(2016).
[37] Gao Z G, Wu Y X, Huang J. Analysis of weld pool dynamic during stationary laser-MIG hybrid welding[J]. The International Journal of Advanced Manufacturing Technology, 44, 870-879(2009).
[38] Xiao R S, Wu S K. Progress on laser-arc hybrid welding[J]. Chinese Journal of Lasers, 35, 1680-1685(2008).
[39] Hirsch J. Recent development in aluminium for automotive applications[J]. Transactions of Nonferrous Metals Society of China, 24, 1995-2002(2014).
[40] Engler O, Hirsch J. Texture control by thermomechanical processing of AA6XXX Al-Mg-Si sheet alloys for automotive applications: a review[J]. Materials Science and Engineering: A, 336, 249-262(2002).
[41] Liu C H, Feng Z Z, Ma P P et al. Reversion of natural ageing and restoration of quick bake-hardening response in Al-Zn-Mg-Cu alloy[J]. Journal of Materials Science & Technology, 95, 88-94(2021).
[42] Huskins E L, Cao B, Ramesh K T. Strengthening mechanisms in an Al-Mg alloy[J]. Materials Science and Engineering: A, 527, 1292-1298(2010).
[43] Pogatscher S, Antrekowitsch H, Leitner H et al. Mechanisms controlling the artificial aging of Al-Mg-Si Alloys[J]. Acta Materialia, 59, 3352-3363(2011).
[44] Berg L K, Gjønnes J, Hansen V et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging[J]. Acta Materialia, 49, 3443-3451(2001).
[45] Pramod R, Shanmugam N S, Krishnadasan C K. Studies on cold metal transfer welding of aluminium alloy 6061-T6 using ER 4043[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234, 924-937(2020).
[46] Guzmán I, Granda E, Vargas B et al. Tensile and fracture behavior in 6061-T6 and 6061-T4 aluminum alloys welded by pulsed metal transfer GMAW[J]. The International Journal of Advanced Manufacturing Technology, 103, 2553-2562(2019).
[47] Huang L J, Wu D S, Hua X M et al. Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy[J]. Journal of Manufacturing Processes, 31, 514-522(2018).
[48] Casalino G, Campanelli S, Ludovico A D. Hybrid welding of AA5754-H111 alloy using a fiber laser[J]. Advanced Materials Research, 628, 193-198(2012).
[49] Vargas J A, Torres J E, Pacheco J A et al. Analysis of heat input effect on the mechanical properties of Al-6061-T6 alloy weld joints[J]. Materials & Design (1980-2015), 52, 556-564(2013).
[50] Avedesian M, Baker H[M]. ASM specialty handbook: aluminum and aluminum alloys(1999).
[51] Zhu C X, Tang X H, He Y et al. Characteristics and formation mechanism of sidewall pores in NG-GMAW of 5083 Al-alloy[J]. Journal of Materials Processing Technology, 238, 274-283(2016).
[52] Zhu C X, Tang X H, He Y et al. Study on arc characteristics and their influences on weld bead geometry in narrow gap GMAW of 5083 Al-alloy[J]. The International Journal of Advanced Manufacturing Technology, 90, 2513-2525(2017).
[53] Kou S. Solidification and liquation cracking issues in welding[J]. JOM, 55, 37-42(2003).
[54] Cao G, Kou S. Predicting and reducing liquation-cracking susceptibility based on temperature vs. fraction solid[J]. Welding Journal-New York, 85, 9(2006).
[55] Zhao H, White D R, DebRoy T. Current issues and problems in laser welding of automotive aluminium alloys[J]. International Materials Reviews, 44, 238-266(1999).
[56] Kou S. A criterion for cracking during solidification[J]. Acta Materialia, 88, 366-374(2015).
[57] Casalino G, Mortello M. Laser-arc combined welding of AA5754 alloy[J]. Materials Letters, 284, 128946(2021).
[58] Ma G Y, Luo X Z, Liu D H et al. 7075 Aluminum alloy welded by laser-TIG hybrid with homogeneous filler wire: Microstructure evaluation and molten pool behavior[J]. Optics & Laser Technology, 169, 110059(2024).
[59] Deng A L, Chen H, Zhang Y B et al. Prediction of the influence of welding metal composition on solidification cracking of laser welded aluminum alloy[J]. Materials Today Communications, 35, 105556(2023).
[60] Zhao D D, Zhou L C, Kong Y et al. Structure and thermodynamics of the key precipitated phases in the Al-Mg-Si alloys from first-principles calculations[J]. Journal of Materials Science, 46, 7839-7849(2011).
[61] Ambriz R R, Barrera G, García R et al. Effect of the weld thermal cycles of the modified indirect electric arc on the mechanical properties of the AA6061-T6 alloy[J]. Welding International, 24, 321-328(2010).
[62] Jin X Y, Song G H, Zheng W G. Laser-arc hybrid welding properties of aluminum alloy 6005A[J]. Applied Mechanics and Materials, 651/652/653, 50-55(2014).
[63] Wanjara P, Cao X J. Hybrid laser-arc welding of AA6061-T6 butt joints[J]. Materials Science Forum, 783/784/785/786, 2833-2838(2014).
[64] Myhr O R, Grong Ø, Fjær H G et al. Modelling of the microstructure and strength evolution in Al-Mg-Si alloys during multistage thermal processing[J]. Acta Materialia, 52, 4997-5008(2004).
[65] Duan C F, Yang S L, Gu J X et al. Microstructure and ratcheting behavior of 6061 aluminum alloy laser-MIG hybrid welding joint[J]. Materials Research Express, 6, 086534(2019).
[66] Wang Q Y, Chen H, Zhu Z T et al. A characterization of microstructure and mechanical properties of A6N01S-T5 aluminum alloy hybrid fiber laser-MIG welded joint[J]. The International Journal of Advanced Manufacturing Technology, 86, 1375-1384(2016).
[67] Qiao J N, Lu J X, Wu S K. Fatigue cracking characteristics of fiber Laser-VPTIG hybrid butt welded 7N01P-T4 aluminum alloy[J]. International Journal of Fatigue, 98, 32-40(2017).
[68] El-Batahgy A M, Klimova-Korsmik O, Akhmetov A et al. High-power fiber laser welding of high-strength AA7075-T6 aluminum alloy welds for mechanical properties research[J]. Materials, 14, 7498(2021).
[69] Wang X M, Li B, Li M X et al. Study of local-zone microstructure, strength and fracture toughness of hybrid laser-metal-inert-gas-welded A7N01 aluminum alloy joint[J]. Materials Science and Engineering: A, 688, 114-122(2017).
[70] Liu S, Li J M, Mi G Y et al. Study on laser-MIG hybrid welding characteristics of A7N01-T6 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 87, 1135-1144(2016).
[71] Tang G, Chen H, Yang X Y et al. Effects of different welding process on the electronic temperature of plasma and weld shape during laser-MIG hybrid welding of A7N01P-T4 aluminum alloy[J]. Journal of Laser Applications, 30, 022002(2018).
[72] Hu Y N, Wu S C, Shen Z et al. Fine equiaxed zone induced softening and failure behavior of 7050 aluminum alloy hybrid laser welds[J]. Materials Science and Engineering: A, 821, 141597(2021).
[73] Chen L, Wang C M, Xiong L D et al. Microstructural, porosity and mechanical properties of lap joint laser welding for 5182 and 6061 dissimilar aluminum alloys under different place configurations[J]. Materials & Design, 191, 108625(2020).
[74] Schierl A. The CMT process a revolution in welding technology[J]. Welding in the World, 49, 38(2005).
[75] Furukawa K. New CMT arc welding process-welding of steel to aluminium dissimilar metals and welding of super-thin aluminium sheets[J]. Welding International, 20, 440-445(2006).
[76] Li Z X, Wen P, Zhang S et al. Effects of Nb micro-alloying on microstructure and mechanical properties of A7204P-T4 aluminum alloy joint by fiber laser-CMT hybrid welding[J]. Chinese Journal of Lasers, 47, 0902001(2020).
[77] Pickin C G, Young K. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy[J]. Science and Technology of Welding and Joining, 11, 583-585(2006).
[78] Xin Z B, Yang Z B, Zhao H et al. Comparative study on welding characteristics of laser-CMT and plasma-CMT hybrid welded AA6082-T6 aluminum alloy butt joints[J]. Materials, 12, 3300(2019).
[79] Zhang C, Li G, Gao M et al. Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 68, 1253-1260(2013).
[80] Han X H, Yang Z B, Ma Y et al. Comparative study of laser-arc hybrid welding for AA6082-T6 aluminum alloy with two different arc modes[J]. Metals, 10, 407(2020).
[82] Yoon J W, Lee Y S, Lee K D et al. Effect of filler wire composition on the Nd∶YAG laser weldability of 6061 aluminum alloy[J]. Materials Science Forum, 475/476/477/478/479, 2591-2594(2005).
[83] Yan S H, Xing B B, Zhou H Y et al. Effect of filling materials on the microstructure and properties of hybrid laser welded Al-Mg-Si alloys joints[J]. Materials Characterization, 144, 205-218(2018).
[84] Yan J, Zeng X Y, Gao M et al. Effect of welding wires on microstructure and mechanical properties of 2A12 aluminum alloy in CO2 laser-MIG hybrid welding[J]. Applied Surface Science, 255, 7307-7313(2009).
[85] Huan P C, Wang X N, Zhang J et al. Effect of wire composition on microstructure and properties of 6063 aluminium alloy hybrid synchronous pulse CMT welded joints[J]. Materials Science and Engineering: A, 790, 139713(2020).
[86] Han J L, Wang S, Zhang D F et al. Study on corrosion properties of 6009 aluminum alloy joint by laser-arc hybrid welding[J]. Materials Reports, 30, 490-493(2016).
[87] Kou S[M]. Welding metallurgy(2003).
[88] Yang X Y, Chen H, Li M V et al. Porosity suppressing and grain refining of narrow-gap rotating laser-MIG hybrid welding of 5A06 aluminum alloy[J]. Journal of Manufacturing Processes, 68, 1100-1113(2021).
[89] Knipling K E, Dunand D C, Seidman D N. Criteria for developing castable, creep-resistant aluminum-based alloys: a review[J]. International Journal of Materials Research, 97, 246-265(2022).
[90] Wang F, Liu Z L, Qiu D et al. Revisiting the role of peritectics in grain refinement of Al alloys[J]. Acta Materialia, 61, 360-370(2013).
[91] Madhusudhan Reddy G, Mukhopadhyay A K, Sambasiva Rao A. Influence of scandium on weldability of 7010 aluminium alloy[J]. Science and Technology of Welding and Joining, 10, 432-441(2005).
[92] Yang D X, Li X Y, He D Y et al. Effect of minor Er and Zr on microstructure and mechanical properties of Al-Mg-Mn alloy (5083) welded joints[J]. Materials Science and Engineering: A, 561, 226-231(2013).
[93] Deng Y, Peng B, Xu G F et al. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al-Zn-Mg alloys[J]. Materials Science and Engineering: A, 639, 500-513(2015).
[94] Wu S K, Li Z X, Qi E Y et al. Impact of Nb on microstructure and properties of oscillating laser-CMT hybrid welding joints of A7204P-T4 aluminium alloy sheets[J]. Science and Technology of Welding and Joining, 26, 273-278(2021).
[95] Wu S K, Wang C, Li Z X et al. Effect of Nb micro-alloying on microstructure and properties of A7204-T4 aluminum alloy joints with fiber laser-VPTIG hybrid welding[J]. Welding in the World, 64, 1459-1469(2020).
[96] Adisa S B, Loginova I, Khalil A et al. Effect of laser welding process parameters and filler metals on the weldability and the mechanical properties of AA7020 aluminium alloy[J]. Journal of Manufacturing and Materials Processing, 2, 33(2018).
[97] Sokoluk M, Cao C Z, Pan S H et al. Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075[J]. Nature Communications, 10, 98(2019).
[98] Fattahi M, Mohammady M, Sajjadi N et al. Effect of TiC nanoparticles on the microstructure and mechanical properties of gas tungsten arc welded aluminum joints[J]. Journal of Materials Processing Technology, 217, 21-29(2015).
[99] Oropeza D, Hofmann D C, Williams K et al. Welding and additive manufacturing with nanoparticle-enhanced aluminum 7075 wire[J]. Journal of Alloys and Compounds, 834, 154987(2020).
[100] Murali N, Sokoluk M, Li X C. Study on aluminum alloy joints welded with nano-treated Al-Mg-Mn filler wire[J]. Materials Letters, 283, 128739(2021).
[101] Cheng Y, Xu J H, Yu L H et al. Effect of TiC/TiC-TiB2 on microstructure and mechanical properties of spray formed 7055 aluminum alloy TIG welded joints[J]. Journal of Materials Research and Technology, 15, 1667-1677(2021).
[102] Zhao Y Q, Zhan X H, Gao Q Y et al. Research on the microstructure characteristic and tensile property of laser-MIG hybrid welded joint for 5A06 aluminum alloy[J]. Metals and Materials International, 26, 346-359(2020).
[103] Atabaki M M, Yazdian N, Kovacevic R. Partial penetration laser-based welding of aluminum alloy (AA5083-H32)[J]. Optik, 127, 6782-6804(2016).
[104] Miao H B, Yu G, He X L et al. Comparative study of hybrid laser-MIG leading configuration on porosity in aluminum alloy bead-on-plate welding[J]. The International Journal of Advanced Manufacturing Technology, 91, 2681-2688(2017).
[105] Huang S, Xu L D, Lou M et al. Keyhole-induced pore formation mechanism in laser-MIG hybrid welding of aluminum alloy based on experiment and multiphase numerical model[J]. Journal of Materials Processing Technology, 314, 117903(2023).
[106] Yan S H, Chen H, Zhu Z T et al. Hybrid laser-metal inert gas welding of Al-Mg-Si alloy joints: Microstructure and mechanical properties[J]. Materials & Design, 61, 160-167(2014).
[107] Han X H, Yang Z B, Ma Y et al. Porosity distribution and mechanical response of laser-MIG hybrid butt welded 6082-T6 aluminum alloy joint[J]. Optics & Laser Technology, 132, 106511(2020).
[108] Yu Y C, Wang C M, Hu X Y et al. Porosity in fiber laser formation of 5A06 aluminum alloy[J]. Journal of Mechanical Science and Technology, 24, 1077-1082(2010).
[109] Xu G X, Li L, Wang H X et al. Simulation and experimental studies of keyhole induced porosity in laser-MIG hybrid fillet welding of aluminum alloy in the horizontal position[J]. Optics & Laser Technology, 119, 105667(2019).
[110] Xu J J, Rong Y M, Huang Y et al. Keyhole-induced porosity formation during laser welding[J]. Journal of Materials Processing Technology, 252, 720-727(2018).
[111] Wang L, Liu Y, Yang C G et al. Study of porosity suppression in oscillating laser-MIG hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 292, 117053(2021).
[112] Wang Z M, Oliveira J P, Zeng Z et al. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties[J]. Optics & Laser Technology, 111, 58-65(2019).
[113] Fetzer F, Sommer M, Weber R et al. Reduction of pores by means of laser beam oscillation during remote welding of Al-Mg-Si[J]. Optics and Lasers in Engineering, 108, 68-77(2018).
[114] Rubben K, Mohrbacher H, Leirman E. Advantages of using an oscillating laser beam for the production of tailored blanks[J]. Proceedings of SPIE, 3097, 228-241(1997).
[115] Zhou L T, Wang X Y, Wang W et al. Effects of laser scanning welding process on porosity rate of aluminum alloy[J]. Transactions of the China Welding Institution, 35, 65-68, 72, 116(2014).
[116] Liu T T, Mu Z Y, Hu R Z et al. Sinusoidal oscillating laser welding of 7075 aluminum alloy: hydrodynamics, porosity formation and optimization[J]. International Journal of Heat and Mass Transfer, 140, 346-358(2019).
[117] Chen G Y, Wang B, Mao S et al. Research on the “∞”-shaped laser scanning welding process for aluminum alloy[J]. Optics & Laser Technology, 115, 32-41(2019).
[118] Yang R. Application of laser scanning welding process in aluminum alloy welding[J]. Modern Manufacturing Technology and Equipment, 106-108(2017).
[119] Zhang C, Yu Y, Chen C et al. Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation[J]. Journal of Materials Processing Technology, 278, 116382(2020).
[120] Wen P, Li Z X, Zhang S et al. Investigation on porosity, microstructures and performances of 6A01-T5 aluminum alloy joint by oscillating fiber laser-CMT hybrid welding[J]. Chinese Journal of Lasers, 47, 0802003(2020).
[121] Cai C, Xie J, Liu Z J et al. Welding characteristics and porosity control of weaving laser-MIG hybrid welding of aluminum alloys[J]. Chinese Journal of Lasers, 48, 1802002(2021).
[122] Wang L, Gao M, Hao Z Q. A pathway to mitigate macrosegregation of laser-arc hybrid Al-Si welds through beam oscillation[J]. International Journal of Heat and Mass Transfer, 151, 119467(2020).
[123] Li Y, Zhao Y Q, Zhou X D et al. Effect of droplet transition on the dynamic behavior of the keyhole during 6061 aluminum alloy laser-MIG hybrid welding[J]. The International Journal of Advanced Manufacturing Technology, 119, 897-909(2022).
[124] Wu D S, Ishida K, Tashiro S et al. Dynamic keyhole behaviors and element mixing in paraxial hybrid plasma-MIG welding with a gap[J]. International Journal of Heat and Mass Transfer, 200, 123511(2023).
[125] Ascari A, Fortunato A, Orazi L et al. The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy[J]. Optics & Laser Technology, 44, 1485-1490(2012).
[126] Chen X Y, Yu G, He X L et al. Effect of droplet impact on molten pool dynamics in hybrid laser-MIG welding of aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 96, 209-222(2018).
[127] Zhang Y H, Chen H, Yang C et al. Influence of laser power on droplet transfer behavior and spatter in laser-MIG hybrid welding of aluminum alloy[J]. Laser & Optoelectronics Progress, 59, 1714005(2022).
[128] Xu K, Wu P B, Li L L et al. Microstructure and performance analysis of laser-MIG hybrid welding joints of aluminum alloy with multi-stranded wire[J]. Transactions of the China Welding Institution, 43, 43-49, 165(2022).
[129] Li Q Y, Zhao X, Xin Z B et al. Welding process and mechanical properties of laser-MIG hybrid welding for 6082 aluminum alloy[J]. Applied Laser, 41, 1168-1177(2021).
[130] Liu T, Zhao Y Q, Zhou X D et al. Effect of energy ratio coefficient on pore during aluminum alloy laser-MIG hybrid welding[J]. Chinese Journal of Lasers, 47, 1102004(2020).
[131] Zhang C, Gao M, Wang D Z et al. Relationship between pool characteristic and weld porosity in laser arc hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 240, 217-222(2017).
[132] Wang J F, Sun Q J, Feng J C et al. Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation[J]. The International Journal of Advanced Manufacturing Technology, 90, 413-420(2017).
[133] Tse H C, Man H C, Yue T M. Effect of magnetic field on plasma control during CO2 laser welding[J]. Optics & Laser Technology, 31, 363-368(1999).
[134] Li M, Xu J J, Huang Y et al. Improving keyhole stability by external magnetic field in full penetration laser welding[J]. JOM, 70, 1261-1266(2018).
[135] Chen J C, Wei Y H, Zhan X H et al. Influence of magnetic field orientation on molten pool dynamics during magnet-assisted laser butt welding of thick aluminum alloy plates[J]. Optics & Laser Technology, 104, 148-158(2018).
[136] Zhu Z W, Ma X Q, Wang C M et al. Modification of droplet morphology and arc oscillation by magnetic field in laser-MIG hybrid welding[J]. Optics and Lasers in Engineering, 131, 106138(2020).
[137] Liu F Y, Tan C W, Wu L J et al. Influence of waveforms on Laser-MIG hybrid welding characteristics of 5052 aluminum alloy assisted by magnetic field[J]. Optics & Laser Technology, 132, 106508(2020).
[138] Deng J W, Chen C, Liu X C et al. A high-strength heat-resistant Al-5.7Ni eutectic alloy with spherical Al3Ni nano-particles by selective laser melting[J]. Scripta Materialia, 203, 114034(2021).
[139] Farkoosh A R, Chen X G, Pekguleryuz M. Dispersoid strengthening of a high temperature Al-Si-Cu-Mg alloy via Mo addition[J]. Materials Science and Engineering: A, 620, 181-189(2015).
[140] Khodabakhshi F, Nosko M, Gerlich A P. Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing[J]. Surface and Coatings Technology, 335, 288-305(2018).
[141] Ye T K, Xu Y X, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite[J]. Materials Science and Engineering: A, 753, 146-155(2019).
[142] Poovazhagan L, Kalaichelvan K, Rajadurai A et al. Characterization of hybrid silicon carbide and boron carbide nanoparticles-reinforced aluminum alloy composites[J]. Procedia Engineering, 64, 681-689(2013).
[143] Mazahery A, Ostadshabani M. Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites[J]. Journal of Composite Materials, 45, 2579-2586(2011).
[144] Metlitskii V A. Flux-cored wires for arc welding and surfacing of cast iron[J]. Welding International, 22, 796-800(2008).
[145] Senthilkumar B, Kannan T, Madesh R. Optimization of flux-cored arc welding process parameters by using genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 93, 35-41(2017).
[146] Zhu B H, Li X T, Ding K Q. Research on hybrid diode-fiber laser welding for aluminum alloy[J]. Applied Laser, 38, 587-590(2018).
[147] Zhao Y Q, Li X, Liu Z Q et al. Stability enhancement of molten pool and keyhole for 2195 Al-Li alloy using fiber-diode laser hybrid welding[J]. Journal of Manufacturing Processes, 85, 724-741(2023).
[148] Yang H, Tang X H, Hu C et al. Study on laser welding of copper material by hybrid light source of blue diode laser and fiber laser[J]. Journal of Laser Applications, 33, 032018(2021).
[149] Wu D S, Sun J H, Li Z G et al. Molten pool behaviors and energy absorption in coaxial hybrid blue-IR lasers welding of a copper material[J]. International Journal of Thermal Sciences, 184, 107945(2023).
Get Citation
Copy Citation Text
Xiaonan Wang, Xiaming Chen, Pengcheng Huan, Xiang Li, Qipeng Dong, Shuncun Luo, Nagaumi Hiromi. Review of Laser-Arc Hybrid Welding Process of Aluminum Alloys for New Energy Vehicles(Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402102
Category: Laser Forming Manufacturing
Received: Oct. 30, 2023
Accepted: Dec. 13, 2023
Published Online: Jan. 17, 2024
The Author Email: Wang Xiaonan (wxn@suda.edu.cn)
CSTR:32183.14.CJL231337