Acta Laser Biology Sinica, Volume. 28, Issue 5, 421(2019)
pH- and NIR Laser Dual-Responsive Metal-Organic Frameworks ZIF-8 with MoS2 Nanosheets and DOX Loading for Chemo/Photothermal Synergistic Cancer Therapy
[1] [1] FERNNDEZ M, JAVAID F, CHUDASAMA V. Advances in targeting the folate receptor in the treatment/imaging of cancers[J]. Chemical Science, 2018, 9(4): 790-810.
[2] [2] YU N, WANG Z, ZHANG J, et al. Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy[J]. Biomaterials, 2018, 161: 279-291.
[4] [4] NG C W, LI J, PU K. Phototherapy-synergized cancer immunotherapy: recent progresses in phototherapy-synergized cancer immunotherapy[J]. Advanced Functional Materials, 2018, 28(46): 1804688.
[5] [5] FAN W P, YUNG B, HUANG P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chemical Reviews, 2017, 117(22): 13566-13638.
[6] [6] XIE W S, GAO Q, WANG D, et al. Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer[J]. Nano Research, 2018, 11(5): 2470-2487.
[7] [7] VAIDHYANATHAN R, IREMONGER S, DAWSON K, et al. An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures[J]. Chemical Communications, 2009, 35(35): 5230-5232.
[8] [8] LI Y, XIE L, LI Y, et al. Metal-organic-framework-based catalyst for highly efficient H2 generation from aqueous NH3BH3 solution[J]. Chemistry-A European Journal, 2010, 15(36): 8951-8954.
[9] [9] DUAN Y, YE F, HUANG Y, et al. One-pot synthesis of a metal-organic framework-based drug carrier for intelligent glucose-responsive insulin delivery[J]. Chemical Communications, 2018, 54(42): 5377-5380.
[10] [10] CAI W, WANG J Q, CHU C C, et al. Metal organic framework-based stimuli-responsive systems for drug delivery[J]. Advanced Science, 6(1): 1801526.
[11] [11] DEKRAFFT K E, BOYLE W S, BURK L M, et al. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography[J]. Journal of Materials Chemistry, 2012, 22(35): 18139-18144.
[12] [12] ZHANG H J, CHEN W, GONG K, et al. Nanoscale zeolitic imidazolate framework-8 as efficient vehicles for enhanced delivery of CpG oligodeoxynucleotides[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31519-31525.
[13] [13] TIAN Y M, ZHAO X, SHEN L C, et al. Synthesis of amorphous MoS2 nanospheres by hydrothermal reaction[J]. Materials Letters, 2006, 60(4): 527-529.
[14] [14] HUANG X, ZHENG B, LIU, Z D, et al. Coating two-dimensional nanomaterials with metal-organic frameworks[J]. ACS Nano, 8(8): 8695-8701.
[15] [15] LIU Kefeng, REN Danni, SUN Hui, et al. Synthesis, characterization and n-hexane adsorption performance of ZIF-8[J]. Chemical Journal of Chinese Universities, 2016, 37(10): 1856-1862.
[16] [16] KIM H, LEE D, KIM J, et al. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide[J]. ACS Nano, 2013, 7(8): 6735-6746.
[17] [17] GHOSH S, DUTTA S, GOMES E, et al. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes[J]. ACS Nano, 2009, 3(9): 2667-2673.
[18] [18] MOON H K, LEE S H, CHOI H C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes[J]. ACS Nano, 2009, 3(11): 3707-3713.
[19] [19] WANG T Z, LI S Q, ZOU Z, et al. A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy[J]. Journal of Materials Chemistry B, 2018, 6(23): 3914-3921.
[20] [20] NG C W, LI J C, PU K Y. Recent progresses in phototherapy-synergized cancer immunotherapy[J]. Advanced Functional Materials, 2018, 28(46): 1804688.
[21] [21] HARTSHORN C M, BRADBURY M S, LANZA G M, et al. Nanotechnology strategies to advance outcomes in clinical cancer care[J]. ACS Nano, 2018, 12(1): 24-43.
[22] [22] HUA X W, BAO Y W, ZENG J, et al. Ultra-small all-in-one nanodots formed via carbon dot-mediated and albumin-based synthesis: multimodal imaging-guided and mild laser-enhanced cancer therapy[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42077-42087.
[23] [23] ZHANG B M, WANG Y, LIU J Y, et al. Recent developments of phototherapy based on graphene family nanomaterials[J]. Current Medicinal Chemistry, 2017, 24(3): 268-291.
[24] [24] FENG L, GAO M, TAO D, et al. Cisplatin-prodrug-constructed liposomes as a versatile theranostic nanoplatform for bimodal imaging guided combination cancer therapy[J]. Advanced Functional Materials, 2016, 26(13): 2207-2217.
[25] [25] LIU T, WANG C, GU X, et al. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer[J]. Advanced Materials, 2014, 26(21): 3433-3440.
[26] [26] KONING G A, EGGERMONT A M, LINDNER L H, et al. Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors[J]. Pharmaceutical Research, 2010, 27(8): 1750-1754.
[27] [27] LIU T, WANG C, GU X, et al. Drug delivery with PEGylated MoS2 nanosheets for combined photothermal and chemotherapy of cancer[J]. Advanced Materials, 2014, 26(21): 3433-3440.
Get Citation
Copy Citation Text
LI Jing, PENG Qian, WANG Lijiao, WANG Chenxu, YANG Fan. pH- and NIR Laser Dual-Responsive Metal-Organic Frameworks ZIF-8 with MoS2 Nanosheets and DOX Loading for Chemo/Photothermal Synergistic Cancer Therapy[J]. Acta Laser Biology Sinica, 2019, 28(5): 421
Category:
Received: Jun. 4, 2019
Accepted: --
Published Online: Nov. 14, 2019
The Author Email: