Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 2, 264(2022)
Progress in blue phase liquid crystal network polymers and their applications
[1] [1] REINITZER F. Beitrge zur kenntniss des cholesterins [J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1888, 9(1): 421-441.
[2] [2] COATES D, GRAY G W. Optical studies of the amorphous liquid-cholesteric liquid crystal transition: the “blue phase” [J]. Physics Letters A, 1973, 45(2): 115-116.
[3] [3] DIERKING I. Textures of Liquid Crystals [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 43-47.
[4] [4] RAO L H, YAN J, WU S T. Prospects of emerging polymer-stabilized blue-phase liquid-crystal displays [J]. Journal of the Society for Information Display, 2010, 18(11): 954-959.
[5] [5] ALEXANDER G P, YEOMANS J M. Stabilizing the blue phases [J]. Physical Review E, 2006, 74(6): 061706.
[6] [6] CHI C Y, LIN G J, HU S S, et al. Effects of cell gap on the optoelectronic properties of pure blue-phase liquid crystal devices: estimating the Kerr constant [J]. Applied Optics, 2017, 56(4): 1207-1214.
[7] [7] GUO Y Q, FU M Z, REN Y X, et al. Low-voltage blue-phase liquid crystal display with single-penetration electrodes [J]. Liquid Crystals, 2017, 44(14/15): 2321-2326.
[8] [8] KIKUCHI H. Liquid crystalline blue phases [M]//KATO T. Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. Berlin Heidelberg: Springer, 2008: 99-117.
[9] [9] COSTELLO M J, MEIBOOM S, SAMMON M. Electron microscopy of a cholesteric liquid crystal and its blue phase [J]. Physical Review A, 1984, 29(5): 2957-2959.
[10] [10] GILLI J M, KAMAY M, SIXOU P. Quenched blue phase, below the glass transition of a side chain polysiloxane: electron microscope studies [J]. Molecular Crystals and Liquid Crystals, 1991, 199(1): 79-86.
[11] [11] ZHANG B Y, MENG F B, HE X Z, et al. Synthesis and characterization of side chain liquid crystalline polymers exhibiting cholesteric and blue phases [J]. Liquid Crystals, 2005, 32(9): 1161-1167.
[12] [12] ZHANG B Y, MENG F B, CONG Y H. Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases [J]. Optics Express, 2007, 15(16): 10175-10181.
[13] [13] MEMMER R. Computer simulation of chiral liquid crystal phases Ⅷ. Blue phases of the chiral Gay-Berne fluid [J]. Liquid Crystals, 2000, 27(4): 533-546.
[14] [14] HENRICH O, STRATFORD K, CATES M E, et al. Structure of blue phase Ⅲ of cholesteric liquid crystals [J]. Physical Review Letters, 2011, 106(10): 107801.
[15] [15] YANG J J, LIU J, GUAN B, et al. Fabrication and photonic applications of large-domain blue phase films [J]. Journal of Materials Chemistry C, 2019, 7(31): 9460-9466.
[16] [16] LIU J, LIU W Z, GUAN B, et al. Diffusionless transformation of soft cubic superstructure from amorphous to simple cubic and body-centered cubic phases [J]. Nature Communications, 2021, 12(1): 3477.
[17] [17] KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquid crystal blue phases [J]. Nature Materials, 2002, 1(1): 64-68.
[18] [18] HE W L, PAN G H, YANG Z, et al. Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative [J]. Advanced Materials, 2009, 21(20): 2050-2053.
[19] [19] HE W L, WEI M J, YANG H, et al. Flexible H-bonded liquid-crystals with wide enantiotropic blue phases [J]. Physical Chemistry Chemical Physics, 2014, 16(12): 5622-5626.
[20] [20] ZHENG Z G, SHEN D, HUANG P. The liquid crystal blue phase induced by bent-shaped molecules with different terminal chain lengths [J]. New Journal of Physics, 2011, 13(6): 063037.
[21] [21] YU Y B, HE W L, JIANG Z M, et al. The effects of azo-oxadiazole-based bent-shaped molecules on the temperature range and the light-responsive performance of blue phase liquid crystal [J]. Liquid Crystals, 2019, 46(7): 1024-1034.
[22] [22] COLES H J, PIVNENKO M N. Liquid crystal ‘blue phases’ with a wide temperature range [J]. Nature, 2005, 436(7053): 997-1000.
[23] [23] YAMAMOTO J, NISHIYAMA I, INOUE M, et al. Optical isotropy and iridescence in a smectic ‘blue phase’ [J]. Nature, 2005, 437(7058): 525-528.
[24] [24] WANG L, HE W L, XIAO X, et al. Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles [J]. Small, 2012, 8(14): 2189-2193.
[25] [25] HE W L, ZHANG W K, XU H, et al. Preparation and optical properties of Fe3O4 nanoparticles-doped blue phase liquid crystal [J]. Physical Chemistry Chemical Physics, 2016, 18(42): 29028-29032.
[26] [26] HU W, WANG L, WANG M, et al. Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly [J]. Nature Communications, 2021, 12(1): 1440.
[27] [27] KITZEROW H S, SCHMID H, RANFT A, et al. Observation of blue phases in chiral networks [J]. Liquid Crystals, 1993, 14(3): 911-916.
[28] [28] GE Z B, GAUZA S, JIAO M Z, et al. Electro-optics of polymer-stabilized blue phase liquid crystal displays [J]. Applied Physics Letters, 2009, 94(10): 101104.
[29] [29] CHEN K M, GAUZA S, XIANYU H Q, et al. Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal [J]. Journal of Display Technology, 2010, 6(2): 49-51.
[30] [30] JO S Y, JEON S W, KIM B C, et al. Polymer stabilization of liquid-crystal blue phase II toward photonic crystals [J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8941-8947.
[31] [31] CHOI H, HIGUCHI H, KIKUCHI H. Fast electro-optic switching in liquid crystal blue phase II [J]. Applied Physics Letters, 2011, 98(13): 131905.
[32] [32] ZHU G, LIN X W, HU W, et al. Liquid crystal blue phase induced by bent-shaped molecules with allylic end groups [J]. Optical Materials Express, 2011, 1(8): 1478-1483.
[33] [33] NAKATA M, TAKANISHI Y, WATANABE J, et al. Blue phases induced by doping chiral nematic liquid crystals with nonchiral molecules [J]. Physical Review E, 2003, 68(4): 041710.
[34] [34] WANG L, HE W L, WANG M, et al. Effects of symmetrically 2,5-disubstituted 1,3,4-oxadiazoles on the temperature range of liquid crystalline blue phases: a systematic study [J]. Liquid Crystals, 2013, 40(3): 354-367.
[35] [35] WANG L, HE W L, XIAO X, et al. Wide blue phase range and electro-optical performances of liquid crystalline composites doped with thiophene-based mesogens [J]. Journal of Materials Chemistry, 2012, 22(6): 2383-2386.
[36] [36] YANG W Q, CAI G Q, LIU Z, et al. Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material [J]. Journal of Materials Chemistry C, 2017, 5(3): 690-696.
[37] [37] IWATA T, SUZUKI K, AMAYA N, et al. Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases [J]. Macromolecules, 2009, 42(6): 2002-2008.
[38] [38] OO T N, MIZUNUMA T, NAGANO Y, et al. Effects of monomer/liquid crystal compositions on electro-optical properties of polymer-stabilized blue phase liquid crystal [J]. Optical Materials Express, 2011, 1(8): 1502-1510.
[39] [39] NORDENDORF G, LORENZ A, HOISCHEN A, et al. Hysteresis and memory factor of the Kerr effect in blue phases [J]. Journal of Applied Physics, 2013, 114(17): 173104.
[40] [40] KIZHAKIDATHAZHATH R, HIGUCHI H, OKUMURA Y, et al. Effect of polymer backbone flexibility on blue phase liquid crystal stabilization [J]. Journal of Molecular Liquids, 2018, 262: 175-179.
[41] [41] KEMIKLIOGLU E, ATIK E. The effect of the monomer functionality on the mechanical performance and polymer morphology of polymer stabilized blue phases [J]. Composites Part B: Engineering, 2019, 165: 96-101.
[42] [42] CHEN Y, YAN J, SUN J, et al. A microsecond-response polymer-stabilized blue phase liquid crystal [J]. Applied Physics Letters, 2011, 99(20): 201105.
[43] [43] YAN J, WU S T. Effect of polymer concentration and composition on blue phase liquid crystals [J]. Journal of Display Technology, 2011, 7(9): 490-493.
[44] [44] IWATA T, SUZUKI K, HIGUCHI H, et al. A method for enlarging the Kerr constant of polymer-stabilised blue phases [J]. Liquid Crystals, 2009, 36(9): 947-951.
[45] [45] PARK N H, PARK H R, NAYEK P, et al. Polymer stabilized double twist cylinders of blue phase liquid crystal for reduced hysteresis and operating voltage [J]. SID Symposium Digest of Technical Papers, 2013, 44(1): 1270-1272.
[46] [46] MANDA R, KIM M S, JEONG SHIN E, et al. Phase stabilisation of blue-phase liquid crystals using a polymerisable chiral additive [J]. Liquid Crystals, 2017, 44(6): 1059-1068.
[47] [47] LI J W, DU W S, GAO A A, et al. Enlarging the Kerr constant of polymer-stabilised blue phases with a novel chiral monomer [J]. Liquid Crystals, 2016, 43(7): 937-943.
[48] [48] BRYAN-BROWN G P, WOOD E L, SAGE I C. Weak surface anchoring of liquid crystals [J]. Nature, 1999, 399(6734): 338-340.
[49] [49] YOSHIZAWA D, OKUMURA Y, YAMAMOTO J, et al. Decreasing the operating voltage of a polymer-stabilized blue phase based on intermolecular affinity [J]. Polymer Journal, 2019, 51(7): 667-673.
[50] [50] HSIEH P J, CHEN H M P. Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers [J]. Liquid Crystals, 2015, 42(2): 216-221.
[51] [51] HUSSAIN Z, DANNER D, MASUTANI A, et al. Investigation of reactive acrylic monomers for their effect on the temperature range and operating voltage of polymer-stabilised optically isotropic liquid crystal blue phases [J]. Liquid Crystals, 2012, 39(11): 1345-1357.
[52] [52] GAO L, LI X, DU X W, et al. High dielectric polymer and its application on electro-optical Kerr effect of blue phase liquid crystal [J]. Applied Physics Letters, 2018, 113(22): 221907.
[53] [53] GAO L, WANG K M, ZHAO R, et al. Effect of a dual functional polymer on the electro-optical properties of blue phase liquid crystals [J]. Polymers, 2019, 11(7): 1128.
[54] [54] ZHU J L, NI S B, SONG Y, et al. Improved Kerr constant and response time of polymer-stabilized blue phase liquid crystal with a reactive diluent [J]. Applied Physics Letters, 2013, 102(7): 071104.
[55] [55] LI H Q, HUANG W B, MO Q Y, et al. Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system [J]. Journal of Materials Chemistry C, 2019, 7(13): 3952-3957.
[56] [56] YOSHIDA H, TANAKA Y, KAWAMOTO K, et al. Nanoparticle-stabilized cholesteric blue phases [J]. Applied Physics Express, 2009, 2(12): 121501.
[57] [57] WANG L, HE W L, WANG Q, et al. Polymer-stabilized nanoparticle-enriched blue phase liquid crystals [J]. Journal of Materials Chemistry C, 2013, 1(40): 6526-6531.
[59] [59] XU X W, ZHANG X W, LUO D, et al. Low voltage polymer-stabilized blue phase liquid crystal reflective display by doping ferroelectric nanoparticles [J]. Optics Express, 2015, 23(25): 32267-32273.
[60] [60] XU X W, LIU Z, LIU Y J, et al. Electrically switchable, hyper-reflective blue phase liquid crystals films [J]. Advanced Optical Materials, 2018, 6(3): 1700891.
[61] [61] LIN Y H, CHEN H S, CHIANG T H, et al. A reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals [J]. Optics Express, 2011, 19(3): 2556-2561.
[62] [62] CASTLES F, MORRIS S M, HUNG J M C, et al. Stretchable liquid-crystal blue-phase gels [J]. Nature Materials, 2014, 13(8): 817-821.
[63] [63] YANG J J, ZHAO W D, YANG Z, et al. Photonic shape memory polymer based on liquid crystalline blue phase films [J]. ACS Applied Materials & Interfaces, 2019, 11(49): 46124-46131.
[64] [64] CHEN Y, WU S T. Electric field-induced monodomain blue phase liquid crystals [J]. Applied Physics Letters, 2013, 102(17): 171110.
[65] [65] YAN J, LIN J B, LI Q, et al. Influence of long-lasting electric field on the formation of monodomain polymer stabilized blue phase liquid crystals [J]. Journal of Applied Physics, 2019, 125(2): 024501.
[66] [66] NAYEK P, JEONG H, PARK H R, et al. Tailoring monodomain in blue phase liquid crystal by surface pinning effect [J]. Applied Physics Express, 2012, 5(5): 051701.
[67] [67] LI W H, HU D C, LI Y, et al. Fringing field-induced monodomain of a polymer-stabilized blue phase liquid crystal [J]. Applied Physics Letters, 2015, 107(24): 241105.
[68] [68] SCHLAFMANN K R, WHITE T J. Retention and deformation of the blue phases in liquid crystalline elastomers [J]. Nature Communications, 2021, 12(1): 4916.
[69] [69] LIN J D, WANG T Y, MO T S, et al. Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase [J]. Scientific Reports, 2016, 6(1): 30407.
[70] [70] HU W, SUN J, WANG Q, et al. Humidity-responsive blue phase liquid-crystalline film with reconfigurable and tailored visual signals [J]. Advanced Functional Materials, 2020, 30(43): 2004610.
[72] [72] GE J P, YIN Y D. Responsive photonic crystals [J]. Angewandte Chemie International Edition, 2011, 50(7): 1492-1522.
[73] [73] HUR S T, LEE B R, GIM M J, et al. Liquid-crystalline blue phase laser with widely tunable wavelength [J]. Advanced Materials, 2013, 25(21): 3002-3006.
[74] [74] CAO W Y, MUOZ A, PALFFY-MUHORAY P, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II [J]. Nature Materials, 2002, 1(2): 111-113.
[75] [75] YOKOYAMA S, MASHIKO S, KIKUCHI H, et al. Laser emission from a polymer-stabilized liquid-crystalline blue phase [J]. Advanced Materials, 2006, 18(1): 48-51.
[76] [76] CHEN C W, JAU H C, WANG C T, et al. Random lasing in blue phase liquid crystals [J]. Optics Express, 2012, 20(21): 23978-23984.
[77] [77] CHEN C W, LI C C, JAU H C, et al. Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals [J]. ACS Photonics, 2015, 2(11): 1524-1531.
[78] [78] WANG M, ZOU C, SUN J, et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Advanced Functional Materials, 2017, 27(46): 1702261.
[79] [79] BEDOLLA PANTOJA M A, ABBOTT N L. Surface-controlled orientational transitions in elastically strained films of liquid crystal that are triggered by vapors of toluene [J]. ACS Applied Materials & Interfaces, 2016, 8(20): 13114-13122.
[80] [80] MULDER D J, SCHENNING A P H J, BASTIAANSEN C W M. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors [J]. Journal of Materials Chemistry C, 2014, 2(33): 6695-6705.
[81] [81] LAI Y T, KUO J C, YANG Y J. A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes [J]. Sensors and Actuators A: Physical, 2014, 215: 83-88.
[82] [82] YANG Y, KIM Y K, WANG X, et al. Structural and optical response of polymer-stabilized blue phase liquid crystal films to volatile organic compounds [J]. ACS Applied Materials & Interfaces, 2020, 12(37): 42099-42108.
[83] [83] GU L L, CHEN X N, JIANG W, et al. Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings [J]. Applied Physics Letters, 2005, 87(20): 201106.
[84] [84] YAN J, LI Y, WU S T. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal [J]. Optics Letters, 2011, 36(8): 1404-1406.
[85] [85] YUAN Y C, LI Y, CHEN C P, et al. Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light [J]. Optics Express, 2015, 23(15): 20007-20013.
[86] [86] HE Z H, CHEN C P, ZHU J L, et al. Electrically tunable holographic polymer templated blue phase liquid crystal grating [J]. Chinese Physics B, 2015, 24(6): 064203.
[87] [87] ZHU J L, LU J G, QIANG J, et al. 1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal [J]. Journal of Applied Physics, 2012, 111(3): 033101.
[88] [88] LIN Y T, JAU H C, LIN T H. Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal [J]. Journal of Applied Physics, 2013, 113(6): 063103.
[89] [89] MANDA R, PAGIDI S, HEO Y J, et al. Polymer-stabilized monodomain blue phase diffraction grating [J]. Advanced Materials Interfaces, 2020, 7(9): 1901923.
[90] [90] MANDA R, PAGIDI S, BHATTACHARYA S S, et al. Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer [J]. Journal of Physics D: Applied Physics, 2018, 51(18): 185103.
[91] [91] WU Y H, LIN Y H, LU Y Q, et al. Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal [J]. Optics Express, 2004, 12(25): 6382-6389.
[92] [92] ZHU G, WEI B Y, SHI L Y, et al. A fast response variable optical attenuator based on blue phase liquid crystal [J]. Optics Express, 2013, 21(5): 53.
Get Citation
Copy Citation Text
CUI Yong-feng, WANG Hao, HE Wan-li, ZHANG Ya-qian, ZHANG Lei, YANG Zhou, CAO Hui, WANG Dong, LI Yu-zhan. Progress in blue phase liquid crystal network polymers and their applications[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 264
Category:
Received: Nov. 26, 2021
Accepted: --
Published Online: Mar. 1, 2022
The Author Email: CUI Yong-feng (2485953184@qq.com)