Journal of Infrared and Millimeter Waves, Volume. 42, Issue 4, 476(2023)

NIR-driven large modulation depth terahertz modulator based on silver/carbon nanoparticles

Han-Guang GOU1, Yu ZHU1, Zong-Dong WU1, Guang-Hua SHI2, and Wei-En LAI1、*
Author Affiliations
  • 1National Engineering Laboratory of Special Display Technology,National Key Laboratory of Advanced Display Technology,Anhui Province Key Laboratory of Measuring Theory and Precision Instrument,Academy of Optoelectronic Technology,School of Instrument Science and Optoelectronics Engineering,Hefei University of Technology,Hefei 230009,China
  • 2The 13th Research Institute of China Electronics Technology Group,Shijiazhuang 050051,China
  • show less
    References(43)

    [1] Cui N, Guan M, Xu M et al. High Electric Field-Enhanced Terahertz Metamaterials with Bowtie Triangle Rings: Modeling, Mechanism, and Carbohydrate Antigen 125 Detection[J]. The Journal of Physical Chemistry C, 125, 19374-19381(2021).

    [2] Kleine-ostmann T, Nagatsuma T. A Review on Terahertz Communications Research[J]. Journal of Infrared, Millimeter and Terahertz Waves, 32, 143-171(2011).

    [3] Koenig S, Lopez-diaz D, Antes J et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 7, 977-981(2013).

    [4] Zhang Zhen-Zhen, FU Zhang-Long, Wang Chang et al. Research progress on terahertz quantum well detectors[J]. Journal of Infrared and Millimeter Waves, 41, 103-109(2022).

    [5] Wei Xiao-Dong, Cai Chun-Feng, Zhang Bing-Po et al. PbTe mid-infrared photovoltage detector[J]. Journal of Infrared and Millimeter Waves, 30, 293-296(2011).

    [6] LAI W, LIU G, GOU H et al. Near-IR Light-Tunable Omnidirectional Broadband Terahertz Wave Antireflection Based on a PEDOT:PSS/Graphene Hybrid Coating[J]. ACS Applied Materials & Interfaces, 14, 43868-76(2022).

    [7] Kleine-ostmann T, Dawson P, Pierz K et al. Room-temperature operation of an electrically driven terahertz modulator[J]. Applied physics letters, 84, 3555-7(2004).

    [8] Jakhar A, Kumar P, Moudgil A et al. Optically Pumped Broadband Terahertz Modulator Based on Nanostructured PtSe2 Thin Films[J]. Advanced Optical Materials, 8, 1901714(2020).

    [9] Ling Fang, Meng Qing-Long, Huang Ren-Shuai et al. Multiband modulation characteristics of temperature-controlled terahertz modulators[J]. Spectroscopy and Spectral Analysis, 37, 1334-1338(2017).

    [10] Li Jia-Bin, Wang Xiao-Hua, Wang Wen-Jie. Mechanistic analysis of terahertz graphene electro-optical modulator based on plasma structure[J]. Journal of Infrared and Millimeter Waves, 40, 143-149(2021).

    [11] Lai W, Huang P, Pelaz B et al. Enhanced All-Optical Modulation of Terahertz Waves on the Basis of Manganese Ferrite Nanoparticles[J]. The Journal of Physical Chemistry C, 121, 21634-21640(2017).

    [12] Lai W, Ge C, Yuan H et al. NIR Light Driven Terahertz Wave Modulator with a Large Modulation Depth Based on a Silicon‐PEDOT:PSS‐Perovskite Hybrid System[J]. Advanced Materials Technologies, 5(2020).

    [13] Bai Y, Bu T, Chen K et al. Review about the optical-controlled terahertz waves modulator[J]. Applied Spectroscopy Reviews, 50, 707-727(2015).

    [14] Reinhard B, Paul O, Rahm M. Metamaterial-based photonic devices for terahertz technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 8500912(2012).

    [15] Shi Z W, Cao X X, Wen Q Y et al. Terahertz modulators based on silicon nanotip array[J]. Advanced Optical Materials, 6, 1700620(2018).

    [16] Hochberg M, Baehr-jones T, Wang G et al. Terahertz all-optical modulation in a silicon–polymer hybrid system[J]. Nature Materials, 5, 703-709(2006).

    [17] Lee J, Mahendra S, Alvarez P J. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations[J]. ACS nano, 4, 3580-3590(2010).

    [18] Wen T, Zhang D, Wen Q et al. Enhanced Optical Modulation Depth of Terahertz Waves by Self-Assembled Monolayer of Plasmonic Gold Nanoparticles[J]. Advanced Optical Materials, 4, 1974-1980(2016).

    [19] Li Y, Wen T, Zhang D et al. Comparison Study of Gold Nanorod and Nanoparticle Monolayer Enhanced Optical Terahertz Modulators[J]. IEEE Transactions on Terahertz Science and Technology, 9, 484-490(2019).

    [20] Zhou R, Wang C, Huang Y et al. Optically enhanced terahertz modulation and sensing in aqueous environment with gold nanorods[J]. Optics and Lasers in Engineering, 133(2020).

    [21] Yu J-P, Chen S, Fan F et al. Accelerating terahertz all-optical modulation by hot carriers effects of silver nanorods in PVA film[J]. AIP Advances, 9(2019).

    [22] Lai W, Zhu Q, Liu G et al. Broadband and large-depth terahertz modulation by self-assembly monolayer silver nanoparticle arrays[J]. Journal of Physics D: Applied Physics, 55(2022).

    [23] Gao Y, Wu Y, Huang P et al. Carbon Dot-Encapsulated Plasmonic Core-Satellite Nanoprobes for Sensitive Detection of Cancer Biomarkers via Dual-Mode Colorimetric and Fluorometric Immunoassay[J]. ACS Applied Nano Materials, 5, 11539-11548(2022).

    [24] Geng B, Hu J, Li Y et al. Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy[J]. Nature Communication, 13, 5735(2022).

    [25] Atabaev T S. Doped Carbon Dots for Sensing and Bioimaging Applications: A Minireview[J]. Nanomaterials (Basel, 8(2018).

    [26] Choi H, Ko S-J, Choi Y et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices[J]. Nature Photonics, 7, 732-738(2013).

    [27] Li X, Rui M, Song J et al. Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review[J]. Advanced Functional Materials, 25, 4929-4947(2015).

    [28] Dong Y, Yu R, Zhao B et al. Revival of Insulating Polyethylenimine by Creatively Carbonizing with Perylene into Highly Crystallized Carbon Dots as the Cathode Interlayer for High-Performance Organic Solar Cells[J]. ACS applied materials & interfaces, 14, 1280-1289(2022).

    [29] Vallan L, Imahori H. Citric Acid-Based Carbon Dots and Their Application in Energy Conversion[J]. ACS applied electronic materials, 4, 4231-4257(2022).

    [30] Jiang X, Jin H, Sun Y et al. Colorimetric and fluorometric dual-channel ratiometric determination of fungicide cymoxanil based on analyte-induced aggregation of silver nanoparticles and dually emitting carbon dots[J]. Mikrochim Acta, 186, 580(2019).

    [31] Li N, Liu T, Liu S G et al. Visible and fluorescent detection of melamine in raw milk with one-step synthesized silver nanoparticles using carbon dots as the reductant and stabilizer[J]. Sensors and Actuators B: Chemical, 248, 597-604(2017).

    [32] Liu S G, Mo S, Han L et al. Oxidation etching induced dual-signal response of carbon dots/silver nanoparticles system for ratiometric optical sensing of H2O2 and H2O2-related bioanalysis[J]. Analytica chimica acta, 1055, 81-89(2019).

    [33] Wei X, Cheng F, Yao Y et al. Facile synthesis of a carbon dots and silver nanoparticles (CDs/AgNPs) composite for antibacterial application[J]. RSC advances, 11, 18417-18422(2021).

    [34] Yang W, Zhang G, Ni J et al. Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots[J]. Mikrochim Acta, 187, 137(2020).

    [35] Zhou Q, Liu Y, Wu Y et al. Measurement of mercury with highly selective fluorescent chemoprobe by carbon dots and silver nanoparticles[J]. Chemosphere, 274, 129959(2021).

    [36] Sahu B, Kurrey R, Khalkho B R et al. α-Cyclodextrin functionalized silver nanoparticles as colorimetric sensor for micro extraction and trace level detection of chlorpyrifos pesticide in fruits and vegetables[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 654(2022).

    [37] Takagahara T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots[J]. Physical review. B, Condensed matter, 47, 4569-4584(1993).

    [38] Yue Lan-Ping, HE Yi-Zhing. Absorption spectroscopic study of germanium nanoparticle mosaic films[J]. Journal of Optics, 94-97(1997).

    [39] Yu Bao-Long, Wu Xiao-Chun, Zou Bing-Lock et al. Effect of dielectric domain-limiting effect on the optical properties of SnO2 nanoparticles[J]. Journal of Physical Chemistry, 103-106(1994).

    [40] Yann Chalopin, Marc Hayoun, Sebastian Volz et al. Surface enhanced infrared absorption in dielectric thin films with ultra-strong confinement effects[J]. Applied Physics Letters, 104, 011905(2014).

    [41] Rodina A. V, Efros Al L. Effect of dielectric confinement on optical properties of colloidal nanostructures[J]. Journal of Experimental and Theoretical Physics, 122, 554-566(2016).

    [42] Shaganov I I, Perova T S, Melnikov V A et al. Size Effect on the Infrared Spectra of Condensed Media under Conditions of 1D, 2D, and 3D Dielectric Confinement[J]. The Journal of Physical Chemistry C, 114, 16071-16081(2010).

    [43] Lai W., Mazin Abdulmunem O., del Pino P. et al. Enhanced Terahertz Radiation Generation of Photoconductive Antennas Based on Manganese Ferrite Nanoparticles[J]. Scientific Reports, 7, 1-7(2017).

    Tools

    Get Citation

    Copy Citation Text

    Han-Guang GOU, Yu ZHU, Zong-Dong WU, Guang-Hua SHI, Wei-En LAI. NIR-driven large modulation depth terahertz modulator based on silver/carbon nanoparticles[J]. Journal of Infrared and Millimeter Waves, 2023, 42(4): 476

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Dec. 9, 2022

    Accepted: --

    Published Online: Aug. 1, 2023

    The Author Email: Wei-En LAI (wnlai@hfut.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2023.04.008

    Topics