Journal of Infrared and Millimeter Waves, Volume. 42, Issue 4, 476(2023)
NIR-driven large modulation depth terahertz modulator based on silver/carbon nanoparticles
[1] Cui N, Guan M, Xu M et al. High Electric Field-Enhanced Terahertz Metamaterials with Bowtie Triangle Rings: Modeling, Mechanism, and Carbohydrate Antigen 125 Detection[J]. The Journal of Physical Chemistry C, 125, 19374-19381(2021).
[2] Kleine-ostmann T, Nagatsuma T. A Review on Terahertz Communications Research[J]. Journal of Infrared, Millimeter and Terahertz Waves, 32, 143-171(2011).
[3] Koenig S, Lopez-diaz D, Antes J et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 7, 977-981(2013).
[4] Zhang Zhen-Zhen, FU Zhang-Long, Wang Chang et al. Research progress on terahertz quantum well detectors[J]. Journal of Infrared and Millimeter Waves, 41, 103-109(2022).
[5] Wei Xiao-Dong, Cai Chun-Feng, Zhang Bing-Po et al. PbTe mid-infrared photovoltage detector[J]. Journal of Infrared and Millimeter Waves, 30, 293-296(2011).
[6] LAI W, LIU G, GOU H et al. Near-IR Light-Tunable Omnidirectional Broadband Terahertz Wave Antireflection Based on a PEDOT:PSS/Graphene Hybrid Coating[J]. ACS Applied Materials & Interfaces, 14, 43868-76(2022).
[7] Kleine-ostmann T, Dawson P, Pierz K et al. Room-temperature operation of an electrically driven terahertz modulator[J]. Applied physics letters, 84, 3555-7(2004).
[8] Jakhar A, Kumar P, Moudgil A et al. Optically Pumped Broadband Terahertz Modulator Based on Nanostructured PtSe2 Thin Films[J]. Advanced Optical Materials, 8, 1901714(2020).
[9] Ling Fang, Meng Qing-Long, Huang Ren-Shuai et al. Multiband modulation characteristics of temperature-controlled terahertz modulators[J]. Spectroscopy and Spectral Analysis, 37, 1334-1338(2017).
[10] Li Jia-Bin, Wang Xiao-Hua, Wang Wen-Jie. Mechanistic analysis of terahertz graphene electro-optical modulator based on plasma structure[J]. Journal of Infrared and Millimeter Waves, 40, 143-149(2021).
[11] Lai W, Huang P, Pelaz B et al. Enhanced All-Optical Modulation of Terahertz Waves on the Basis of Manganese Ferrite Nanoparticles[J]. The Journal of Physical Chemistry C, 121, 21634-21640(2017).
[12] Lai W, Ge C, Yuan H et al. NIR Light Driven Terahertz Wave Modulator with a Large Modulation Depth Based on a Silicon‐PEDOT:PSS‐Perovskite Hybrid System[J]. Advanced Materials Technologies, 5(2020).
[13] Bai Y, Bu T, Chen K et al. Review about the optical-controlled terahertz waves modulator[J]. Applied Spectroscopy Reviews, 50, 707-727(2015).
[14] Reinhard B, Paul O, Rahm M. Metamaterial-based photonic devices for terahertz technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 8500912(2012).
[15] Shi Z W, Cao X X, Wen Q Y et al. Terahertz modulators based on silicon nanotip array[J]. Advanced Optical Materials, 6, 1700620(2018).
[16] Hochberg M, Baehr-jones T, Wang G et al. Terahertz all-optical modulation in a silicon–polymer hybrid system[J]. Nature Materials, 5, 703-709(2006).
[17] Lee J, Mahendra S, Alvarez P J. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations[J]. ACS nano, 4, 3580-3590(2010).
[18] Wen T, Zhang D, Wen Q et al. Enhanced Optical Modulation Depth of Terahertz Waves by Self-Assembled Monolayer of Plasmonic Gold Nanoparticles[J]. Advanced Optical Materials, 4, 1974-1980(2016).
[19] Li Y, Wen T, Zhang D et al. Comparison Study of Gold Nanorod and Nanoparticle Monolayer Enhanced Optical Terahertz Modulators[J]. IEEE Transactions on Terahertz Science and Technology, 9, 484-490(2019).
[20] Zhou R, Wang C, Huang Y et al. Optically enhanced terahertz modulation and sensing in aqueous environment with gold nanorods[J]. Optics and Lasers in Engineering, 133(2020).
[21] Yu J-P, Chen S, Fan F et al. Accelerating terahertz all-optical modulation by hot carriers effects of silver nanorods in PVA film[J]. AIP Advances, 9(2019).
[22] Lai W, Zhu Q, Liu G et al. Broadband and large-depth terahertz modulation by self-assembly monolayer silver nanoparticle arrays[J]. Journal of Physics D: Applied Physics, 55(2022).
[23] Gao Y, Wu Y, Huang P et al. Carbon Dot-Encapsulated Plasmonic Core-Satellite Nanoprobes for Sensitive Detection of Cancer Biomarkers via Dual-Mode Colorimetric and Fluorometric Immunoassay[J]. ACS Applied Nano Materials, 5, 11539-11548(2022).
[24] Geng B, Hu J, Li Y et al. Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy[J]. Nature Communication, 13, 5735(2022).
[25] Atabaev T S. Doped Carbon Dots for Sensing and Bioimaging Applications: A Minireview[J]. Nanomaterials (Basel, 8(2018).
[26] Choi H, Ko S-J, Choi Y et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices[J]. Nature Photonics, 7, 732-738(2013).
[27] Li X, Rui M, Song J et al. Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review[J]. Advanced Functional Materials, 25, 4929-4947(2015).
[28] Dong Y, Yu R, Zhao B et al. Revival of Insulating Polyethylenimine by Creatively Carbonizing with Perylene into Highly Crystallized Carbon Dots as the Cathode Interlayer for High-Performance Organic Solar Cells[J]. ACS applied materials & interfaces, 14, 1280-1289(2022).
[29] Vallan L, Imahori H. Citric Acid-Based Carbon Dots and Their Application in Energy Conversion[J]. ACS applied electronic materials, 4, 4231-4257(2022).
[30] Jiang X, Jin H, Sun Y et al. Colorimetric and fluorometric dual-channel ratiometric determination of fungicide cymoxanil based on analyte-induced aggregation of silver nanoparticles and dually emitting carbon dots[J]. Mikrochim Acta, 186, 580(2019).
[31] Li N, Liu T, Liu S G et al. Visible and fluorescent detection of melamine in raw milk with one-step synthesized silver nanoparticles using carbon dots as the reductant and stabilizer[J]. Sensors and Actuators B: Chemical, 248, 597-604(2017).
[32] Liu S G, Mo S, Han L et al. Oxidation etching induced dual-signal response of carbon dots/silver nanoparticles system for ratiometric optical sensing of H2O2 and H2O2-related bioanalysis[J]. Analytica chimica acta, 1055, 81-89(2019).
[33] Wei X, Cheng F, Yao Y et al. Facile synthesis of a carbon dots and silver nanoparticles (CDs/AgNPs) composite for antibacterial application[J]. RSC advances, 11, 18417-18422(2021).
[34] Yang W, Zhang G, Ni J et al. Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots[J]. Mikrochim Acta, 187, 137(2020).
[35] Zhou Q, Liu Y, Wu Y et al. Measurement of mercury with highly selective fluorescent chemoprobe by carbon dots and silver nanoparticles[J]. Chemosphere, 274, 129959(2021).
[36] Sahu B, Kurrey R, Khalkho B R et al. α-Cyclodextrin functionalized silver nanoparticles as colorimetric sensor for micro extraction and trace level detection of chlorpyrifos pesticide in fruits and vegetables[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 654(2022).
[37] Takagahara T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots[J]. Physical review. B, Condensed matter, 47, 4569-4584(1993).
[38] Yue Lan-Ping, HE Yi-Zhing. Absorption spectroscopic study of germanium nanoparticle mosaic films[J]. Journal of Optics, 94-97(1997).
[39] Yu Bao-Long, Wu Xiao-Chun, Zou Bing-Lock et al. Effect of dielectric domain-limiting effect on the optical properties of SnO2 nanoparticles[J]. Journal of Physical Chemistry, 103-106(1994).
[40] Yann Chalopin, Marc Hayoun, Sebastian Volz et al. Surface enhanced infrared absorption in dielectric thin films with ultra-strong confinement effects[J]. Applied Physics Letters, 104, 011905(2014).
[41] Rodina A. V, Efros Al L. Effect of dielectric confinement on optical properties of colloidal nanostructures[J]. Journal of Experimental and Theoretical Physics, 122, 554-566(2016).
[42] Shaganov I I, Perova T S, Melnikov V A et al. Size Effect on the Infrared Spectra of Condensed Media under Conditions of 1D, 2D, and 3D Dielectric Confinement[J]. The Journal of Physical Chemistry C, 114, 16071-16081(2010).
[43] Lai W., Mazin Abdulmunem O., del Pino P. et al. Enhanced Terahertz Radiation Generation of Photoconductive Antennas Based on Manganese Ferrite Nanoparticles[J]. Scientific Reports, 7, 1-7(2017).
Get Citation
Copy Citation Text
Han-Guang GOU, Yu ZHU, Zong-Dong WU, Guang-Hua SHI, Wei-En LAI. NIR-driven large modulation depth terahertz modulator based on silver/carbon nanoparticles[J]. Journal of Infrared and Millimeter Waves, 2023, 42(4): 476
Category: Research Articles
Received: Dec. 9, 2022
Accepted: --
Published Online: Aug. 1, 2023
The Author Email: Wei-En LAI (wnlai@hfut.edu.cn)