Acta Laser Biology Sinica, Volume. 29, Issue 4, 295(2020)

Research Progress of Organelles Targeting Photosensitizers

LI Xipeng and ZHANG Tao
Author Affiliations
  • [in Chinese]
  • show less
    References(34)

    [1] [1] ZHOU Z, SONG J, NIE L, et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy[J]. Chemical Society Reviews, 2016, 45(23): 6597- 6626.

    [2] [2] LIU S, ZHANG H, LI Y, et al. Strategies to enhance the photosensitization: polymerization and the donor acceptor even odd effect[J]. Angewandte Chemie International Edition, 2018, 57(46): 15189-15193.

    [3] [3] GOTTESMAN M M, FOJO T, BATES S E. Multidrug resistance in cancer: role of ATP dependent transporters[J]. Nature Reviews Cancer, 2002, 2(1): 48-58.

    [4] [4] GUO L, NIU G, ZHENG X, et al. Single near-infrared emissive polymer nanoparticles as versatile phototheranostics[J]. Advanced Science, 2017, 4(10): 1700085.

    [5] [5] ZHENG X, GE J, WU J, et al. Biodegradable hypocrellin derivative nanovesicle as a near-infrared light-driven theranostic for dually photoactive cancer imaging and therapy[J]. Biomaterials, 2018, 185: 133-141.

    [6] [6] CELLI J P, SPRING B Q, RIZVI I, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization[J]. Chemical Reviews, 2010, 110(5): 2795-2838.

    [7] [7] ZHOU Z J, SONG J B, TIAN R, et al. Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy[J]. Angewandte Chemie International Edition, 2017, 56(23): 6492-6496.

    [8] [8] ZHOU Z J, SONG J B, NIE L M, et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy[J]. Chemical Society Review, 2016, 45(23): 6597-6626.

    [9] [9] WANG Q, NG D K P, LO P C. Functional aza-boron dipyr- romethenes for subcellular imaging and organelle-specific photodynamic therapy[J]. Journal of Materials Chemistry B, 2018, 6(20): 3285-3296.

    [10] [10] OGILBY P R. Singlet oxygen: there is indeed something new under the sun[J]. Chemical Society Reviews, 2010, 39(8): 3181-3209.

    [11] [11] SKOVSEN E, SNYDER J W, LAMBERT J D, et al. Lifetime and diffusion of singlet oxygen in a cell[J]. The Journal of Physical Chemistry B, 2005, 109(18): 8570-8573.

    [12] [12] PAN L, HE Q, LIU J, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles[J]. Journal of American Chemistry Society, 2012, 134(14): 5722-5725.

    [13] [13] HUO S, JIN S, MA X, et al. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry[J]. ACS Nano, 2014, 8(6): 5852-5862.

    [14] [14] YU Z Z, PAN W, LI N, et al. A nuclear targeted dual-photosensitizer for drug-resistant cancer therapy with NIR activated multiple ROS[J]. Chemical Science, 2016, 7(7): 4237- 4244

    [15] [15] CHENG H, YUAN P, FAN G L, et al. Chimeric peptide na- norods for plasma membrane and nuclear targeted photosensitizer delivery and enhanced photodynamic therapy[J]. Applied Materials Today, 2019, 16: 120-131.

    [16] [16] WEINBERG S E, CHANDEL N S. Targeting mitochondria metabolism for cancer therapy[J]. Nature Chemical Biology, 2015, 11(1): 9-15.

    [17] [17] JIN H J, KANTHASAMY A, GHOSH A, et al. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes[J]. Biochimica et Biophysica Acta, 2014, 1842(8): 1282-1294.

    [18] [18] YUE C X, YANG Y M, SONG J, et al. Mitochondria-targeting near-infrared light-triggered thermosensitive liposomes for localized photothermal and photodynamic ablation of tumors combined with chemotherapy[J]. Nanoscale, 2017, 9(31): 11103-11118.

    [19] [19] GUAN Y, LU H G, LI W, et al. Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 26731-26739.

    [20] [20] YANG G B, XU L G, XU J, et al. Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer[J]. Nano Letters, 2018, 18(4): 2475-2484.

    [21] [21] YU Z, SUN Q, PAN W, et al. A near-infrared triggered na- nophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy[J]. ACS Nano, 2015, 9(11): 11064-11074.

    [22] [22] YANG X Y, WANG D Y, ZHU J W, et al. Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy[J]. Chemical Science, 2019, 10(13): 3779-3785.

    [23] [23] GUICCIARDI M E, LEIST M, GORES G J. Lysosomes in cell death[J]. Oncogene, 2004, 23(16): 2881-2890.

    [24] [24] SAFTIG P, KLUMPERMAN J. Lysosome biogenesis and ly- sosomal membrane proteins: trafficking meets function[J]. Nature Reviews Molecular Cell Biology, 2009, 10(9): 623-635.

    [25] [25] KROEMER G, JAATTELA M. Lysosomes and autophagy in cell death control[J]. Nature Reviews Cancer, 2005, 5(11): 886-897.

    [26] [26] LI M L, TIAN R S, FAN J L, et al. A lysosome-targeted BODIPY as potential NIR photosensitizer for photodynamic therapy[J]. Dyes and Pigments, 2017, 147: 99-105.

    [27] [27] NIU N, ZHOU H P, LIU N, et al. A smart perylene derived photosensitizer for lysosome-targeted and self-assessed photodynamic therapy[J]. Chemical Communications, 2019, 55(8): 1036-1039.

    [28] [28] ZHOU Z X, LIU J P, HUANG J J, et al. A self-assembled Ru-Pt metallacage as a lysosome targeting photosensitizer for 2-photon photodynamic therapy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(41): 20296-20302

    [29] [29] NAKAGAWA T, ZHU H, MORISHIMA N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta[J]. Nature, 2000, 403(6765): 98-103.

    [30] [30] BRECKENRIDGE D G, GERMAIN M, MATHAI J P, et al. Regulation of apoptosis by endoplasmic reticulum pathways[J]. Oncogene, 2003, 22(53): 8608-8618.

    [31] [31] RAO R V, ELLERBY H M, BREDESEN D E. Coupling endoplasmic reticulum stress to the cell death program[J]. Cell Death Differ, 2004, 11(4): 372-380.

    [32] [32] ZHOU Y M, CHEUNG Y K, MA C, et al. Endoplasmic reticulum-localized two-photon-absorbing boron dipyrromethenes as advanced photosensitizers for photodynamic therapy[J]. Journal of Medicinal Chemistry, 2018, 61(9): 3952-3961.

    [33] [33] ZHAO X, MA H X, CHEN J J, et al. An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy[J]. European Journal of Medicinal Chemistry, 2019, 182(15): 111625.

    [34] [34] DENG H Z, ZHOU Z J, YANG W J, et al. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy[J]. Nano Letter, 2020, 20(3): 1928- 1933.

    Tools

    Get Citation

    Copy Citation Text

    LI Xipeng, ZHANG Tao. Research Progress of Organelles Targeting Photosensitizers[J]. Acta Laser Biology Sinica, 2020, 29(4): 295

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 29, 2020

    Accepted: --

    Published Online: Dec. 30, 2020

    The Author Email:

    DOI:10.3969/j. issn. 1007-7146. 2020. 04. 002

    Topics