Optics and Precision Engineering, Volume. 31, Issue 16, 2430(2023)

Multi-stage frame alignment video super- resolution network

Sen WANG, Yang ZHU, Yinhui ZHANG*, Qingjian WANG, and Zifen HE
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • show less
    References(45)

    [1] DONG C, LOY C C, HE K M et al[M]. Learning a Deep Convolutional Network for Image Super-Resolution, 184-199(2014).

    [2] KIM H et al. Enhanced deep residual networks for single image super-resolution[C], 1132-1140(21).

    [3] ZHANG Y L, LI K P, LI K et al[M]. Image Super-Resolution Using Very Deep Residual Channel Attention Networks, 294-310(2018).

    [4] SHI W Z, CABALLERO J, HUSZÁR F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(27).

    [5] [5] 5蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151. (in Chinese). doi: 10.37188/OPE.20212901.0142

    [6] [6] 6程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学 精密工程, 2022, 30(20): 2489-2500. doi: 10.37188/OPE.20223020.2489CHENGD Q, ZHAOJ M, KOUQ Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Opt. Precision Eng., 2022, 30(20): 2489-2500. (in Chinese). doi: 10.37188/OPE.20223020.2489

    [7] [7] 7耿铭昆, 吴凡路, 王栋. 轻量化火星遥感影像超分辨率重建网络[J]. 光学 精密工程, 2022, 30(12): 1487-1498. doi: 10.37188/OPE.20223012.1487GENGM K, WUF L, WANGD. Lightweight Mars remote sensing image super-resolution reconstruction network[J]. Opt. Precision Eng., 2022, 30(12): 1487-1498. (in Chinese). doi: 10.37188/OPE.20223012.1487

    [8] LIU H Y, RUAN Z B, ZHAO P et al. Video super-resolution based on deep learning: a comprehensive survey[J]. Artificial Intelligence Review, 55, 5981-6035(2022).

    [9] KAPPELER A, YOO S, DAI Q Q et al. Video super-resolution with convolutional neural networks[J]. IEEE Transactions on Computational Imaging, 2, 109-122(2016).

    [10] CHAN K C K, WANG X T, YU K et al. BasicVSR: the search for essential components in video super-resolution and beyond[C], 4945-4954(20).

    [11] CHAN K C K, ZHOU S C, XU X Y et al. Basicvsr: improving video super-resolution with enhanced propagation and alignment[C], 5962-5971(18).

    [12] WANG X T, CHAN K C K, YU K et al. EDVR: video restoration with enhanced deformable convolutional networks[C], 1954-1963(16).

    [13] CABALLERO J, LEDIG C, AITKEN A et al. Real-time video super-resolution with spatio-temporal networks and motion compensation[C], 2848-2857(21).

    [14] XUE T F, CHEN B A, WU J J et al. Video enhancement with task-oriented flow[J]. International Journal of Computer Vision, 127, 1106-1125(2019).

    [15] TAO X, GAO H Y, LIAO R J et al. Detail-revealing deep video super-resolution[C], 4482-4490(22).

    [16] YAN Q S, GONG D, SHI Q F et al. Attention-guided network for ghost-free high dynamic range imaging[C], 1751-1760(15).

    [17] KUPYN O, MARTYNIUK T, WU J R et al. DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better[C], 8877-8886.

    [18] TIAN Y P, ZHANG Y L, FU Y et al. TDAN: Temporally-deformable alignment network for video super-resolution[C], 3357-3366(13).

    [19] OH S W, KANG J et al. Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation[C], 3224-3232(18).

    [21] LI S, HE F X, DU B et al. Fast spatio-temporal residual network for video super-resolution[C], 10514-10523(15).

    [22] HUANG Y, WANG W, WANG L. Video super-resolution via bidirectional recurrent convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1015-1028(2018).

    [23] ZHU X B, LI Z Z, ZHANG X Y et al. Residual invertible spatio-temporal network for video super-resolution[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 5981-5988(2019).

    [24] FUOLI D, GU S H, TIMOFTE R. Efficient video super-resolution through recurrent latent space propagation[C], 3476-3485(27).

    [25] VALANARASU J M J, PATEL V M. UNeXt MLP-Based Rapid Medical Image Segmentation Network[M]. Lecture Notes in Computer Science, 23-33(2022).

    [26] RANJAN A, BLACK M J. Optical flow estimation using a spatial pyramid network[C], 21, 4161-4170(2017).

    [27] ZAMIR S W, ARORA A, KHAN S et al. Multi-stage progressive image restoration[C], 20, 14821-14831(2021).

    [28] YI P, WANG Z Y, JIANG K et al. Omniscient video super-resolution[C], 10, 4429-4438(2021).

    [29] WANG Z Y, YI P, JIANG K et al. Multi-memory convolutional neural network for video super-resolution[J]. IEEE Transactions on Image Processing, 28, 2530-2544(2019).

    [30] YI P, WANG Z Y, JIANG K et al. Multi-temporal ultra dense memory network for video super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 30, 2503-2516(2020).

    [31] YI P, WANG Z Y, JIANG K et al. Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations[C], 3106-3115(2019).

    [32] ISOBE T, JIA X, GU S H et al[M]. Video Super-Resolution with Recurrent Structure-Detail Network, 645-660(2020).

    [33] SAJJADI MS, VEMULAPALLI R, BROWN M. Frame-recurrent video super-resolution[C], 6626-6634(2018).

    [34] YAN B, LIN C, TAN W. Frame and feature-context video super-resolution[C], 33, 5597-5604(2019).

    [37] BAIK S, HONG S et al. NTIRE 2019 challenge on video deblurring and super-resolution: dataset and study[C], 1996-2005(16).

    [38] LIU C, SUN D Q. On Bayesian adaptive video super resolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 346-360(2014).

    [39] LI W B, TAO X, GUO T A et al[M]. MuCAN: Multi-Correspondence Aggregation Network For Video Super-Resolution, 335-351(2020).

    [40] ISOBE T, LI S J, JIA X et al. Video super-resolution with temporal group attention[C], 8005-8014(13).

    [42] HARIS M, SHAKHNAROVICH G, UKITA N. Recurrent back-projection network for video super-resolution[C], 3892-3901(15).

    [43] YI P, WANG Z, JIANG K et al. Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations[C], 3106-3115(2019).

    [44] YANG R, WANG S, WU X et al. Using lightweight convolutional neural network to track vibration displacement in rotating body video[J]. Mechanical Systems and Signal Processing, 177, 109137(2022).

    [45] ZHOU J W, LI H G, ZHANG L et al. Vibration measurement with video processing based on alternating optimization of frequency and phase shifts[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-13(2021).

    Tools

    Get Citation

    Copy Citation Text

    Sen WANG, Yang ZHU, Yinhui ZHANG, Qingjian WANG, Zifen HE. Multi-stage frame alignment video super- resolution network[J]. Optics and Precision Engineering, 2023, 31(16): 2430

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Dec. 14, 2022

    Accepted: --

    Published Online: Sep. 5, 2023

    The Author Email: Yinhui ZHANG (zhangyinhui@kust.edu.cn)

    DOI:10.37188/OPE.20233116.2430

    Topics