Chinese Journal of Lasers, Volume. 34, Issue 1, 3(2007)

Laser Communications in Space Ⅰ Optical Link and Terminal Technology

[in Chinese]*
Author Affiliations
  • [in Chinese]
  • show less
    References(92)

    [1] [1] M. Katzman. Laser Satellite Communictions [M]. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987

    [2] [2] S. G. Lambert, W. L. Casey. Laser Communications in Space [M]. Boston, London: Artech House, 1995

    [3] [3] F. E. Goodwein. A review of operational laser communication systems [J]. Proc. of the IEEE, 1970, 58(10):1746~1752

    [4] [4] W. R. Leeb. Prospects of laser communications in space [C]. Proceedings of the ESA Workshop on Space Laser Applications and Technology, 1984, ESA SP-202:3~13

    [5] [5] A. F. Popescu, B. Furch. Status of the European developments for laser intersatellite communications [C]. SPIE, 1993, 1866:10~20

    [6] [6] V. W. S. Chan. Optical space communications [J]. IEEE J. Sel. Top. Quantum Electron., 2000, 6(6):959~975

    [7] [7] J. L. Vanhove, C. Nldeke. In-orbit demonstration of optical IOL/ISL—the silex project [J]. Intern. J. Satellite Communications, 1988, 6:119~126

    [8] [8] M. Arnaud, A. Barumchercyk, E. Sein. An experimental optical link between an earth remote sensing satellite spot 4, and a European data relay satellite [J]. Intern. J. Satellite Communications, 1988, 6:127~140

    [9] [9] E. Perez, M Bailly, J. M. Pairot. Pointing acquisition and tracking system for Silex inter-satellite optical link [C]. SPIE, 1989, 1111:277~298

    [10] [10] G. Oppenhuser, M. Witting. The European SILEX project: Concept, performance status and planning [C]. SPIE, 1990, 1218:27~37

    [11] [11] B. Laurent, O. Duchmann. The SILEX project: The first European optical intersatellite link experiment [C]. SPIE, 1991, 1417:2~12

    [12] [12] O. Duchmann, G. Planche. How to meet intersatellite links mission requirements by an adequate optical terminal design [C]. SPIE, 1991, 1417:30~41

    [13] [13] M. Bailly, E. Perez. The pointing, acquisition and tracking system of Silex European program: a major technological step for intersatellites optical communication [C]. SPIE, 1991, 1417:142~157

    [14] [14] F. Cosson, P. Doubrere, E. Perez. Simulation model and on-ground performances validation of the PAT system for Silex program [C]. SPIE, 1991, 1417:262~276

    [15] [15] G. Oppenhuser, M. Witting, A. Popescu. The European SILEX project and other advanced concepts for optical space communications [C]. SPIE, 1991, 1522:2~13

    [16] [16] R. P. Jonas. Optical pupil relay design for SILEX: Optimising wavefront error and transmit/receive beams co-alignment [C]. SPIE, 1992, 1635:99~108

    [17] [17] D. Malaise, M. Renard. Silex beacon [C]. SPIE, 1992, 1635:337~343

    [18] [18] R. Craig, B. Li, B. Chan. Laser qualification for the Silex program [C]. SPIE, 1994, 2123:238~242

    [19] [19] U. Hilderand. Receiver front end for optical free space communications [C]. SPIE, 1994, 2210:96~102

    [20] [20] T.-T. Nielsen. Pointing, acquisition and tracking system for the free space communication system, Silex [C]. SPIE, 1995, 2381:194~205

    [21] [21] Michel Renard, Paul J. Dobie, C. Grodent et al.. Optical telecommunications-performance of the proto-flight model Silex beacon [C]. SPIE, 1996, 2699:278~287

    [22] [22] B. Laurent, G. Planche. Silex overview after flight terminals campaign [C]. SPIE, 1997, 2990:10~22

    [23] [23] G. Oppenhuser. Silex program status-a major milestone is reached [C]. SPIE, 1997, 2990:2~9

    [24] [24] B. Demelenne, T. T. Nielsen, J. C. Guillen. Silex-ground segment control facilities and flight operations [C]. SPIE, 1999, 3615:2~10

    [25] [25] T.-T. Nielsen, B. Demelenne, E. Desplats. In orbit test results of the first Silex terminal [C]. SPIE, 1999, 3615:31~42

    [26] [26] G. Planche, B. Laurent, J. C. Guillen et al.. Silex final ground testing and in-flight performances assessment [C]. SPIE, 1999, 3615:64~77

    [27] [27] T.-T. Nielsen, G. Oppenhuser. In orbit test result of an operational intersatellite link between ARTEMIS and SPOT4, SILEX [C]. SPIE, 2002, 4635:1~15

    [28] [28] M. Reyes, Z. Sodnik, P. Lopez et al.. Preliminary results of the in-orbit test of ARTEMIS with the optical ground station [C]. SPIE, 2002, 4635:38~49

    [29] [29] M. Reyes, J. A. Rodriguez, T. Viera et al.. Design and performance of the ESA Optical Ground Station [C]. SPIE, 2002, 4635:248~261

    [30] [30] A. Alonso, M. Reyes, Z. Sodnik. Performance of satellite-to-ground communications link between ARTEMIS and the Optical Ground Station [C]. SPIE, 2004, 5572:372~383

    [31] [31] M. Shikatani, M. Toyoda. Ground system development for the ETS-VI/LCE laser communications experiment [C]. SPIE, 1993, 1866:21~29

    [32] [32] A. T. Nakamori. Present and future of optical intersatellite communication research at the National Space Development Agency of Japan (NASDA) [C]. SPIE, 1994, 2123:2~13

    [33] [33] A. Yamamoto, T. Hori. Japanese first optical inter-orbit communications engineering test satellite (OICETS) [C]. SPIE, 1994, 2210:30~37

    [34] [34] K. Araki, Y. Arimoto, M. Shikatani et al.. Performance evaluation of laser communication equipment onboard the ETS-VI satellite [C]. SPIE, 1996, 2699:52~59

    [35] [35] K. Nakagawa, A. Yamamoto. Engineering model test of LUCE (Laser Utilizing Communication Equipment) [C]. SPIE, 1996, 2699:114~121

    [36] [36] Y. Suzuki, K. Zakagawa, T. Jono et al.. Current status of OICETS laser communication terminal development—development of laser diodes and sensors for OICETS program [C]. SPIE, 1997, 2990:31~37

    [37] [37] K. Nakagasa, A. Yamamoto. Performance test result of LUCE (Laser Utilizing Communications Equipment) engineering model [C]. SPIE, 2000, 3932:68~76

    [38] [38] M. Toyoshima, S. Yamakawa, T. Yamawaki et al.. Ground-to-satellite optical link tests between the Japanese laser communication terminal and the European geostationary satellite ARTEMIS [C]. SPIE, 2004, 5338:1~15

    [39] [39] T. Jono, Y. Takayama, N. Kura et al.. OICETS on-orbit laser communication experiments [C]. SPIE, 2006, 6105:03

    [40] [40] M. Toyoshima, K. Takizawa, T. Kuri et al.. Ground-to-OICETS laser communication experiments [C]. SPIE, 2006, 6304:40B

    [41] [41] G. C. Baister, Ch. Haupt, S. Matthews et al.. The ISLFE terminal development project-results from the engineering breadboard phase [C]. AIAA, 2002, 2034

    [42] [42] T. Dreischer, A. Maerki, T. Weigel et al.. Operating in sub-arc seconds: high precision laser terminals for intersatellite communications [C]. SPIE, 2002, 4902:87~98

    [43] [43] G. C. Baister, T. Dreischer, E. R. Ground et al.. The OPTEL terminal development programma-enabling technologies for future optical crosslink applications [C]. AIAA, http://www.constraves.com/popup/popup_optel.htm

    [44] [44] R. Lange, B. Smutny. Optical inter-satellite links based on homodyne BPSK modulation: Heritage, status and outlook [C]. SPIE, 2005, 5712:1~12

    [45] [45] R. Lange, B. Smutny, B. Wandernoth et al.. 142 km 5.625 Gbps free-space optical link based on homodyne BPSK modulation [C]. SPIE, 2006, 6105:61050A-1~61050A-9

    [46] [46] J. Lewis, P. Gatenby, G. Baister. The optical subsystem of the SOUT [C]. SPIE, 1994, 2210:49~60

    [47] [47] G. C. Baister, P. V. Gatenby. The SOUT optical intersatellite communications terminal [J]. IEE, Proc. Optoeletronics, 1994, 141(6):345~355

    [48] [48] G. C. Baister, P. V. Gatenby. The SOUT optical intersatellite communications terminal elegant breadboard [J]. IEE, Proc. Optoeletronics, 1995, 142(6):279~287

    [49] [49] G. C. Baister, P. V. Gatenby, J. Lewis et al.. Small optical terminal designs with a softmount interface [C]. SPIE, 1997, 2990:172~180

    [50] [50] P. V. Gatenby, B. Laurent. Small laser terminal for operational intersatellite links [J]. Space Communications, 1995, 13:257~267

    [51] [51] K. Pribil, U. A. Johann, H. Sontag et al.. SOLACOS: a diode-pumped Nd:YAG laser breadboard for coherent space communication system verification [C]. SPIE, 1991, 1522:36~41

    [52] [52] D. K. Pribil, J. Flemmig. SOLACOS high datarate satellite communication system verification program [C]. SPIE, 1994, 2210:39~48

    [53] [53] J. Flemmig, D. K. Pribil. SOLACOS PAT subsystem implementation [C]. SPIE, 1994, 2210:164~172

    [54] [54] M. Shikatani, S. Yoshikadl. Optical intersatellite link experiment between the earth station and ETS-VI [C]. SPIE, 1990, 1218:2~12

    [55] [55] K. Komatu, S. Kanda. Laser beam acquisition and tracking system for ETS-VI laser communication equipment (LCE) [C]. SPIE, 1990, 1218:96~107

    [56] [56] M. Shimizu, K. Shiratama. Point-ahead mechanism for ETS-VI optical ISL experiment [C]. SPIE, 1990, 1218:646~657

    [57] [57] M. Shikatani, M. Toyoda. Ground system development for the ETS-VI/LCE laser communications experiment [C]. SPIE, 1993, 1866:21~29

    [58] [58] A. T. Nakamori. Present and future of optical intersatellite communication research at the National Space Development Agency of Japan (NASDA) [C]. SPIE, 1994, 2123:2~13

    [59] [59] M. Toyoda, M. Toyoshima, T. Takahashi et al.. Ground to ETS-VI narrow laser beam transmission [C]. SPIE, 1996, 2699:71~80

    [60] [60] K. Araki, Y. Arimoto, M. Shikatani et al.. Performance evaluation of laser communication equipment onboard the ETS-VI satellite [C]. SPIE, 1996, 2699:52~59

    [61] [61] M. Toyoshima, K. Araki. Far-field pattern measurement of an onboard laser transmitter by use of a space-to-ground optical link [J]. Appl. Opt., 1998, 37(10):1720~1730

    [62] [62] R. Ruigrok, P. Adhikari, R. Stieger. Preliminary tracking performance of the STRV-2 lasercom transceiver [C]. SPIE, 1996, 2699:198~209

    [63] [63] J. Schuster, H. Hakakha, E. Korevaar. Optomechanical design of STRV-2 lasercom transceiver using novel azimuth/slant gimbal [C]. SPIE, 1996, 2699:227~239

    [64] [64] E. Korevaar, J. Schuster, P. Adhikari et al.. Description of STRV-2 lasercom experimental operations [C]. SPIE, 1997, 2990:60~69

    [65] [65] E. Korevaar, J. Schuster, P. Adhikari et al.. Description of STRV-2 lasercom flight hardware [C]. SPIE, 1997, 2990:38~49

    [66] [66] I. I. Kim, E. J. Korevaar, H. Hakakha et al.. Horizontal-link performance of the STRV-2 lasercom experiment ground terminals [C]. SPIE, 1999, 3615:11~22

    [67] [67] A. Biswas, G. Williams, K. E. Wilson et al.. Results of the STRV-2 lasercom terminal evaluation tests [C]. SPIE, 1998, 3266:2~13

    [68] [68] E. Korevaar, J. Schuster, R. Stieger et al.. Design of ground terminal for STRV-2 satellite-to-ground lasercom experiment [C]. SPIE, 1998, 3266:153~164

    [69] [69] I. I. Kim, H. Hakakha, B. Riley et al.. (Very) Preliminary results of the STRV-2 satellite-to-ground lasercom experiment [C]. SPIE, 2000, 3932:21~34

    [70] [70] J. Shoemaker, P. Brooks, E. Korevaar et al.. The space technology research vehicle (STRV) -2 programm [C]. SPIE, 2000, 4136:36~47

    [71] [71] I. I. Kim, B. Riley, N. M. Wong et al.. Lessons learned from the STRV-2 satellite-to-ground lasercom experiment [C]. SPIE, 2001, 4272:1~15

    [72] [72] C. Chen, J. R. Lesh. Overview of the optical communications demonstrator [C]. SPIE, 1994, 2123:85~95

    [73] [73] H. Hemmati, D. Copeland. Laser transmitter assembly for optical communications demonstrator [C]. SPIE, 1994, 2123:283~291

    [74] [74] D. Russell, H. Ansari, C.-C. Chen. Lasercom pointing, acquisiting, and tracking control using a CCD-based tracker [C]. SPIE, 1994, 2123:294~303

    [75] [75] L. A. Voisinet. Control processing system architecture for the optical communications demonstrator [C]. SPIE, 1994, 2123:393~398

    [76] [76] N. A. Page. Design of the optical demonstrator instrument optical system [C]. SPIE, 1994, 2123:498~503

    [77] [77] T.-Y. Yan, M. Jeganathan, J. R. Lesh. Progress on the development of the optical communications demonstrator [C]. SPIE, 1997, 2990:94~101

    [78] [78] M. Jeganathan, S. Monacos. Performance analysis and electronics packaging of the optical communications demonstrator [C]. SPIE, 1998, 3266:33~41

    [79] [79] K. E. Wilson, J. V. Sandusky. Development of a 1-m class telescope at TME to support optical communications demonstrations [C]. SPIE, 1998, 3266:146~152

    [80] [80] M. Jeganathan, A. Portillo, C. Racho et al.. Lessons learnt from the optical communications demonstrator (OCD) [C]. SPIE, 1999, 3615:23~31

    [81] [81] A. Biswas, M. W. Wright, B. Sanii et al.. 45km horizontal path optical link demonstrations [C]. SPIE, 2001, 4272:60~71

    [82] [82] J. V. Sandusky, J. R. Lesh. Planning for a long-term optical demonstration from the international space station [C]. SPIE, 1998, 3266:128~134

    [83] [83] G. G. Ortiz, M. Jeganathan, J. V. Sandusky et al.. Design of a 2.5Gbps optical transmitter for the international space station [C]. SPIE, 1999, 3615:179~184

    [84] [84] S. Lee, J. W. Alexander, M. Jeganathan et al.. Pointing and tracking subsystem design for optical communications link between the international space station and ground [C]. SPIE, 2000, 3932:150~157

    [85] [85] D. M. Boroson, A. Biswas, B. L. Edwards. MLCD: Overview of NASA′s Mars laser communications demonstration system [C]. SPIE, 2004, 5338:16~28

    [86] [86] D. M. Boroson, R. S. Bondurant, J. J. Scozzafava. Overview of high rate deep space laser communications options [C]. SPIE, 2004, 5338:37~49

    [87] [87] A. Biswas, D. Boroson, B. Edwards. Mars laser communication demonstration: what it would have been [C]. SPIE, 2006, 6105:610502-1~610502-12

    [88] [88] M. Bopp, G. Huther, T. Spatscheck et al.. BPSK homodyne and DPSK heterodyne receivers for free-space communication with ND:host lasers [C]. SPIE, 1991, 1522:199~209

    [89] [89] R. Garreis, Carl Zeiss. 90° optical hybrid for coherent receivers [C]. SPIE, 1991, 1522:210~219

    [90] [90] F. Herzog, K. Kudielka, D. Erni et al.. Optical phase locked loop for transparent inter-satellite communications [J]. Opt. Express, 2005, 13(10):3816~3821

    [91] [91] F. T. Herzog. An optical phase locked loop for coherent space communications [D]. Switzerland: Swiss Federal Institute of Technology Zurich, 2006

    [92] [92] L. Liu, X. Zhu, Y. Hu et al.. A prototype of intersatellite laser communications terminals [C]. SPIE, 2005, 5892:137~141

    CLP Journals

    [1] Shen Baoliang, Sun Jianfeng, Zhou Yu, Pu Lili, Li Bing, Liu Liren. Influence of Time-Varying Atmospheric Turbulence to Facular Orientation Deviation in Dynamic Process[J]. Chinese Journal of Lasers, 2011, 38(8): 805004

    [2] Li Feng, Geng Chao, Li Xinyang, Luo Wen, Qiu Qi. Technical research of adaptive fiber coupler array based on SPGD algorithm[J]. Infrared and Laser Engineering, 2015, 44(7): 2156

    [3] Yu Jianjie, Tan Liying, Ma Jing, Han Qiqi, Yang Yuqiang, Li Mi. A Novel Method to Improve the Emission Efficiency of Satellite Optical Communication Terminal[J]. Chinese Journal of Lasers, 2009, 36(3): 581

    [4] Zhao Jing, Zhao Weihu, Li Yongjun, Zhao Shanghong, Han Lei, Li Xuan. Scheduling Algorithm for Data Relay Satellite with Microwave and Laser Hybrid Links[J]. Chinese Journal of Lasers, 2013, 40(10): 1005005

    [5] Hou Peipei, Zhou Yu, Zhi Yanan, Sun Jianfeng, Liu Liren. Free Space Optical 2×4 90° Hybrid Based on Crystal Birefringence[J]. Acta Optica Sinica, 2010, 30(12): 3413

    [6] Qian Feng, Jia Jianjun, Zhang Liang, Wang Jianyu. Defective Pixel Correction of Spot-Detecting Camera in Satellite-to-Ground Laser Communication ATP System[J]. Chinese Journal of Lasers, 2014, 41(5): 505007

    [7] Mingji Dong, Baojun Lin, Yingchun Liu, Lisha Zhou. Topology Dynamic Optimization for Inter-Satellite Laser Links of Navigation Satellite Based on Multi-Objective Simulated Annealing Method[J]. Chinese Journal of Lasers, 2018, 45(7): 0706004

    [8] Xu Nan, Liu Liren, Wan Lingyu, Sun Jianfeng. Coherent Detection of Position Errors in Space Laser Coherent Communications[J]. Acta Optica Sinica, 2010, 30(2): 347

    [9] Zhan Weida, Li Hongzuo, Wang Zhijian. Link Equation Correction Method and Power Budget for Space Optical Communication[J]. Chinese Journal of Lasers, 2010, 37(S1): 198

    [10] Zhan Weida, Li Hongzuo, Wang Zhijian, Jiang Huilin. High-Frequency and High-Power Laser Modulator in Space Optical Communications[J]. Laser & Optoelectronics Progress, 2010, 47(12): 120604

    [11] Zhao Jing, Zhao Shanghong, Li Yongjun, Zhao Weihu, Han Lei, Li Xuan. Scheduling Algorithm for Data Relay Satellite Based on View Period Window Refreshing[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110602

    [12] Yan Aimin, Liu Liren, Dai Enwen, Sun Jianfeng, Zhou Yu. Experimental Study on Beam Combination and Aperture Filling of Coherent Laser Arrays Using Conjugate Dammann Grating[J]. Acta Optica Sinica, 2010, 30(6): 1822

    [13] Song Tingting, Ma Jing, Tan Liying, Yu Siyuan, Ran Qiwen. Lunar Laser Communication Demonstration in USA: Terminal Design[J]. Laser & Optoelectronics Progress, 2014, 51(5): 50003

    [14] Yan Aimin, Zhou Yu, Sun Jianfeng, Liu Liren. Technology and Progress of Compound-Axis Pointing in Satellite Laser Communication[J]. Laser & Optoelectronics Progress, 2010, 47(4): 40601

    [15] Wan Lingyu, Su Shida, Liu Liren, Liu Dean, Zhou Yu. Design of a New 90° 2×4 Hybrid Based on the Birefringence and the Electro-Optic Effect of Crystal[J]. Chinese Journal of Lasers, 2009, 36(9): 2358

    [16] ZHANG Jing, FU Xiu-hua, PAN Yong-gang. Design and Fabrication of Satellite Laser Communication Filter Coating[J]. Acta Photonica Sinica, 2012, 41(3): 303

    [17] Liu Liren. Synthetic Aperture Imaging Ladar (VI)∶ Space-Time Speckle Effect and Heterodyne Signal-to-Noise Ratio[J]. Acta Optica Sinica, 2009, 29(8): 2326

    [18] Jiang Lun, Wang Chao, An Yan, Liu Zhuang, Li Yingchao, Zhang Lizhong. Polarization State Transfer Characteristics Analysis of Coude Type Laser Communication Terminal[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110603

    [19] Song Tingting, Ma Jing, Tan Liying, Yu Siyuan, Ran Qiwen. Experiment Design and Development of the Lunar Laser Communication Demonstration in USA[J]. Laser & Optoelectronics Progress, 2014, 51(4): 40004

    [20] Zhang Jian, Yu Yongji, Jiang Chengyao, Wang Zijian, Wang Bin, Chen Xinyu, Jin Guangyong. Experiment comparison of acousto-optical Q-switching and RTP electro-optical Q-switching of high repetition frequency Nd:YVO4 laser[J]. Infrared and Laser Engineering, 2017, 46(2): 205002

    [21] Jiang Lun, Wang Chao, An Yan, Liu Zhuang, Li Yingchao, Zhang Lizhong. Real-Time Signal Polarization Compensation Method for Periscopic Laser Communication Terminal[J]. Laser & Optoelectronics Progress, 2016, 53(12): 120601

    [22] Ma Xiaoping, Sun Jianfeng, Hou Peipei, Xu Qian, Zhi Yanan, Liu Liren. Research Progress on Overcoming the Atmospheric Turbulence Effect in Satellite-to-Ground Laser Communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120002

    [23] Bai Shuai, Wang Jianyu, Zhang Liang, Yang Mingdong. Development Progress and Trends of Space Optical Communications[J]. Laser & Optoelectronics Progress, 2015, 52(7): 70001

    [24] Zhu Xiaolei, Tang Hao, Li Xiaoli, Wang Juntao. Recent Progresses of LD Pumped Solid State Lasers with High Repetition Rate Electro-Optic Q-Switch[J]. Chinese Journal of Lasers, 2009, 36(7): 1654

    [25] Liu Rui, Yu Yongji, Chen Xinyu, Wang Chao, Wu Chunting, Jin Guangyong. 150 kHz Q-Switched Adhesive-Free Bond Composite NdYVO4/NdGdVO4 Laser[J]. Chinese Journal of Lasers, 2012, 39(6): 602001

    [26] Liu Liren. Synthetic Aperture Imaging Ladar (Ⅳ): Unified Operation Mode and Two-Dimensional Data Collection Equation[J]. Acta Optica Sinica, 2009, 29(1): 1

    [27] Zhou Yu, Xu Nan, Luan Zhu, Yan Aimin, Wang Lijuan, Sun Jianfeng, Liu Liren. 2D Imaging Experiment of a 2D Target in a Laboratory-Scale Synthetic Aperture Imaging Ladar[J]. Acta Optica Sinica, 2009, 29(7): 2030

    [28] Ma Xiaoping, Sun Jianfeng, Zhi Yanan, Lu Wei, Liu Liren, Xu Qian, Lu Dong. Research of DPSK Modulation and Self-Differential Homodyne Coherent Detection Technology to Overcome Atmospheric Turbulence Effect in the Satellite-to-Ground Laser Communication[J]. Acta Optica Sinica, 2013, 33(7): 706017

    [29] Tang Hao, Zhu Xiaolei, Meng Junqing, Zang Huaguo. High Repetition Rate Short Pulse Width LGS Electro-Optic Q-Switched Nd:YVO4 Laser[J]. Acta Optica Sinica, 2010, 30(1): 137

    [30] Zhao Yingxiu, Yang Yang, Liu Wei. Design and positional accuracy test of the orbital motion simulator for space laser communication[J]. Infrared and Laser Engineering, 2015, 44(S): 205

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese]. Laser Communications in Space Ⅰ Optical Link and Terminal Technology[J]. Chinese Journal of Lasers, 2007, 34(1): 3

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Nov. 10, 2006

    Accepted: --

    Published Online: Jan. 22, 2007

    The Author Email: (lirenliu@mail.shcnc.ac.cn)

    DOI:

    Topics