Journal of Inorganic Materials, Volume. 39, Issue 12, 1316(2024)
[1] TIAN Z, WANG J, XIN B Y et al. Pencil painting like preparation for flexible thermoelectric material of high-performance p-type Na1.4Co2O4 and novel n-type Na
[2] LI Z, XIAO C, XIE Y. Layered thermoelectric materials: structure, bonding, and performance mechanisms[J]. Applied Physics Reviews, 9, 011303(2022).
[3] MAO J, CHEN G, REN Z F. Thermoelectric cooling materials[J]. Nature Materials, 20, 454(2020).
[4] ZHAO Y L, CHENG H L, LI Y X et al. Quasi-solid conductive gels with high thermoelectric properties and high mechanical stretchability consisting of a low cost and green deep eutectic solvent[J]. Journal of Materials Chemistry A, 10, 4222(2022).
[6] WANG S N, WANG D Y, SU L Z et al. Realizing synergistic optimization of thermoelectric properties in n-type BiSbSe3 polycrystals
[7] ZHANG T D, DENG S P, ZHAO X D et al. Regulation of Ge vacancies through Sm doping resulting in superior thermoelectric performance in GeTe[J]. Journal of Materials Chemistry A, 10, 3698(2022).
[8] ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity[J]. Journal of Materiomics, 1, 92(2015).
[9] HU L P, WU H J, ZHU T J et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride- based solid solutions[J]. Advanced Energy Materials, 5, 1500411(2015).
[10] HU L P, GAO H L, LIU H L et al. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects[J]. Journal of Materials Chemistry, 22, 16484(2012).
[11] XIE H H, YU C, ZHU T J et al. Increased electrical conductivity in fine-grained (Zr,Hf)NiSn based thermoelectric materials with nanoscale precipitates[J]. Applied Physics Letters, 100, 254104(2012).
[12] QIU P F, YANG J, HUANG X Y et al. Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half- Heusler alloys[J]. Applied Physics Letters, 96, 152105(2010).
[13] DASGUPTA T, STIEWE C, HASSDORF R et al. Effect of vacancies on the thermoelectric properties of Mg2Si1-
[14] HU L P, ZHU T J, LIU H L et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[J]. Advanced Functional Materials, 24, 5211(2014).
[15] GAO H T, ZHAO K P, WULIJI H X G et al. Adaptable sublattice stabilized high-entropy materials with superior thermoelectric performance[J]. Energy Environmental Science, 16, 6046(2023).
[16] YU Y, HE D S, ZHANG S Y et al. Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering[J]. Nano Energy, 203(2017).
[17] QIN B C, ZHANG Y, WANG D Y et al. Ultrahigh average ZT realized in p-type SnSe crystalline thermoelectrics through producing extrinsic vacancies[J]. Journal of the American Chemical Society, 142, 5901(2020).
[19] POPURI S R, POLLET M, DECOURT R et al. Large thermoelectric power factors and impact of texturing on the thermal conductivity in polycrystalline SnSe[J]. Journal of Materials Chemistry C, 4, 1685(2016).
[20] FU C G, ZHU T J, LIU Y T et al. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit ZT > 1[J], 8, 216(2015).
[21] CHEN H, FAN W H, AN D C et al. Improvement of thermoelectric performance of SnTe by energy band optimization and carrier regulation[J]. Journal of Inorganic Materials, 39, 306(2024).
[22] TIAN Z, JIANG Q W, LI J B et al. Achieving n- and p-type thermoelectric materials with the identical chemical composition BiSbTe1.5Se1.5 by defect structure engineering[J]. Chemical Engineering Journal, 152954(2024).
[23] SUI J H, LI J, HE J Q et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides[J]. Energy Environmental Science, 6, 2916(2013).
[24] HU L P, ZHU T J, WANG Y G et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction[J]. NPG Asia Materials, 6, 88(2014).
[26] ZHANG L J, WANG J L, SUN Q et al. Three-stage inter- orthorhombic evolution and high thermoelectric performance in Ag-doped nanolaminar SnSe polycrystals[J]. Advanced Energy Materials, 7, 1700573(2017).
[28] LU X, HOU J, ZHANG Q et al. Effect of Mg content on thermoelectric property of Mg3(1+
[29] SHEN D Y, CHENG R H, WANG W W et al. Enhanced thermoelectric performance of p-type Bi2Si2Te6 enabled
[30] LUO Y B, MA Z, HAO S Q et al. Thermoelectric performance of the 2D Bi2Si2Te6 semiconductor[J]. Journal of the American Chemical Society, 144, 1445(2022).
[31] MADAR N, GIVON Y, MOGILYANSKY D et al. High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases[J]. Journal of Applied Physics, 120, 035102(2016).
[32] LUO Y B, YANG J Y, LI G. Enhancement of the thermoelectric performance of polycrystalline In4Se2.5 by copper intercalation and bromine substitution[J]. Advanced Energy Materials, 4, 1300599(2014).
[33] YELGEL O C, SRIVASTAVA G P. Thermoelectric properties of n-type Bi2(Te0.85Se0.15)3 single crystals doped with CuBr and SbI3[J]. Physical Review B, 85, 125207(2012).
[34] SHUAI J, KIM H S, LAN Y C. Study on thermoelectric performance by Na doping in nanostructured Mg1-
[35] MATARE H F. Carrier transport at grain boundaries in semiconductors[J]. Journal of Applied Physics, 56, 2605(1984).
[36] SETO J Y W. The electrical properties of polycrystalline silicon films[J]. Journal of Applied Physics, 46, 5247(1975).
[37] PIKE G E, SEAGER C H. The DC voltage dependence of semiconductor grain-boundary resistance[J]. Journal of Applied Physics, 50, 3414(1979).
[38] MAY A F, SNYDER G J[J].
[39] SCHELLING P K, PHILLPOT S R, KEBLINSKI P. Kapitza conductance and phonon scattering at grain boundaries by simulation[J]. Journal of Applied Physics, 95, 6082(2004).
[40] POLLACK. Kapitza resistance[J]. Reviews of Modern Physics, 41, 48(1969).
[41] NARDUCCI D, SELEZNEVA E, CEROFOLINI G et al. Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors[J]. Journal of Solid State Chemistry, 19(2012).
[42] LIN Y, WOOD M, IMASATO K et al. Expression of interfacial Seebeck coefficient through grain boundary engineering with multi-layer graphene nanoplatelets[J]. Energy Environmental Science, 13, 4114(2020).
[43] ZHAO L D, ZHANG B P, LI J F et al. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering[J]. Solid State Sciences, 10, 651(2008).
[44] SCHULTZ J M, MCHUGH J P, TILLER W A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3[J]. Journal of Applied Physics, 33, 2443(1962).
[45] LI Q, CHEN S, LIU K K et al. Donor-like effect and thermoelectric properties in n-type Bi2Te3-based compounds[J]. Acta Physica Sinica, 72, 097101(2023).
[46] TOBERER E S, ZEVALKINK A, CRISOSTO N et al. The Zintl compound Ca5Al2Sb6 for low-cost thermoelectric power generation[J]. Advanced Functional Materials, 20, 4375(2010).
[47] ZHOU Z F, ZHENG Y P, YANG Y Y et al. Optimized weighted mobility induced high thermoelectric performance of ZnO-based multilayered thin films[J]. Journal of the American Ceramic Society, 106, 2911(2022).
[48] SNYDER G J, SNYDER A H, WOOD M et al. Weighted mobility[J]. Advanced Materials, 32, 2001537(2020).
[49] GONG Y R, ZHANG S H, HOU Y X et al. Enhanced density of states facilitates high thermoelectric performance in solution- grown Ge- and In-codoped SnSe nanoplates[J]. ACS Nano, 17, 801(2022).
[50] XIAO Y, WANG D Y, ZHANG Y et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS[J]. Journal of the American Chemical Society, 142, 4051(2020).
Get Citation
Copy Citation Text
Zhen TIAN, Quanwei JIANG, Jianbo LI, Lifeng YU, Huijun KANG, Tongmin WANG.
Category:
Received: Apr. 12, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: Huijun KANG (kanghuijun@dlut.edu.cn)