Photonic Sensors, Volume. 14, Issue 4, 240413(2024)

Highly-Sensitive Polymer Optical Fiber SPR Sensor for Fast Immunoassay

Ying WANG1,2, Xing RAO1,2, Xun WU1,2, George Y. CHEN1,2、*, Changrui LIAO1,2, Mateusz Jakub SMIETANA3, and and Yiping WANG1,2
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
  • 3Division of Microsystem & Electronic Materials Technology, Institute of Microelectronics & Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  • show less
    References(46)

    [1] [1] L. A. Cavacini, M. Kennel, E. V. Lally, M. R. Posner, and A. Quinn, “Human immunoglobulin production in immunodeficient mice: enhancement by immunosuppression of host and in vitro activation of human mononuclear cells,” Clinical & Experimental Immunology, 1992, 90(1): 135–140.

    [2] [2] U. Artus, E. W. Herbst, J. A. Rump, and H. H. Peter, “Defects in the immunoglobulin producing cells in bone marrow of patients with variable immunodeficiency syndrome,” Immunitat und Infektion, 1995, 23(2): 69–71.

    [3] [3] S. Barmettler, M. S. Ong, J. R. Farmer, H. Choi, and J. Walter, “Association of immunoglobulin levels, infectious risk, and mortality with rituximab and hypogammaglobulinemia,” JAMA Network Open, 2018, 1(7): e184169.

    [4] [4] A. Epp, K. C. Sullivan, A. B. Herr, and R. T. Strait, “Immunoglobulin glycosylation effects in allergy and immunity,” Current Allergy and Asthma Reports, 2016, 16: 79.

    [5] [5] P. G. E. Kennedy, M. Graner, T. Pointon, X. Li, K. Tanimoto, K. Dennison, et al., “Aberrant immunoglobulin G glycosylation in multiple sclerosis,” Journal of Neuroimmune Pharmacology, 2022, 17(1–2): 218–227.

    [6] [6] K. Brockow, “Detection of drug-specific immunoglobulin E (IgE) and acute mediator release for the diagnosis of immediate drug hypersensitivity reactions,” Journal of Immunological Methods, 2021, 496: 113101.

    [7] [7] Y. T. Tseng, Y. J. Chuang, Y. C. Wu, C. S. Yang, M. C. Wang, and F. G. Tseng, “A gold- nanoparticle-enhanced immune sensor based on fiber optic interferometry,” Nanotechnology, 2008, 19(34): 345501.

    [8] [8] L. H. Chen, C. C. Chan, K. Ni, P. B. Hu, T. Li, W. C. Wong, et al., “Label-free fiber-optic interferometric immunosensors based on waist-enlarged fusion taper,” Sensors and Actuators B: Chemical, 2013, 178: 176–184.

    [9] [9] F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, et al., “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosensors and Bioelectronics, 2014, 60: 305–310.

    [10] [10] Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photonic Sensors, 2012, 2(1): 37–49.

    [11] [11] B. T. Wang and Q. Wang, “An interferometric optical fiber biosensor with high sensitivity for IgG/anti-IgG immunosensing,” Optics Communications, 2018, 426: 388–394.

    [12] [12] S. Q. Hu, Y. F. Chen, Y. Chen, L. Chen, H. D. Zheng, N. H. Azeman, et al., “High-performance fiber plasmonic sensor by engineering the dispersion of hyperbolic metamaterials composed of Ag/TiO2,” Optics Express, 2020, 28(17): 25562–25573.

    [13] [13] H. Bhardwaj, G. Sumana, and C. A. Marquette, “A label-free ultrasensitive microfluidic surface plasmon resonance biosensor for aflatoxin B-1 detection using nanoparticles integrated gold chip,” Food Chemistry, 2020, 307: 125530.

    [14] [14] S. Balbinot, A. M. Srivastav, J. Vidic, I. Abdulhalim, and M. Manzano, “Plasmonic biosensors for food control,” Trends in Food Science & Technology, 2021, 111: 128–140.

    [15] [15] R. Gu, Y. Duan, Y. Li, and Z. Luo, “Fiber-optic- based biosensor as an innovative technology for point-of-care testing detection of foodborne pathogenic bacteria to defend food and agricultural product safety,” Journal of Agricultural and Food Chemistry, 2023, 71(29):10982–10988.

    [16] [16] C. R. Lawrence, N. J. Geddes, D. N. Furlong, and J. R. Sambles, “Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings,” Biosensors and Bioelectronics, 1996, 11(4): 389–400.

    [17] [17] F. Chiavaioli, P. Zubiate, I. Del Villar, C. R. Zamarreno, A. Giannetti, S. Tombelli, et al., “Femtomolar detection by nanocoated fiber label-free biosensors,” ACS Sensors, 2018, 3(5) 936–943.

    [18] [18] E. N. Primo, M. J. Kogan, H. E. Verdejo, S. Bollo, M. D. Rubianes, and G. A. Rivas, “Label-free graphene oxide-based surface plasmon resonance immunosensor for the quantification of galectin-3, a novel cardiac biomarker,” ACS Applied Materials & Interfaces, 2018, 10(28): 23501–23508.

    [19] [19] Y. Qian, Y. Zhao, Q. L. Wu, and Y. Yang, “Review of salinity measurement technology based on optical fiber sensor,” Sensors and Actuators B: Chemical, 2018, 260: 86–105.

    [20] [20] Y. Zhao, R. J. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance,” Biosensors and Bioelectronics, 2019, 142: 111505.

    [21] [21] W. Luo, J. Meng, X. Li, Q. Xie, D. Yi, Y. Wang, et al., “Temperature effects on surface plasmon resonance sensor based on side-polished D-shaped photonic crystal fiber,” Measurement, 2021, 181: 109504.

    [22] [22] C. Li, Z. Li, S. L. Li, Y. N. Zhang, B. P. Sun, Y. H. Yu, et al., “LSPR optical fiber biosensor based on a 3D composite structure of gold nanoparticles and multilayer graphene films,” Optics Express, 2020, 28(5): 6071–6083.

    [23] [23] B. Sun and Y. P. Wang, “High-sensitivity detection of IgG operating near the dispersion turning point in tapered two-mode fibers,” Micromachines, 2020, 11(3): 270.

    [24] [24] P. Wang, L. Bo, and Y. Semenova, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors, 2015, 5(3) 471–499.

    [25] [25] Y. N. Zhang, S. Y. E, B. R. Tao, Q. L. Wu, and B. Han, “Reflective SPR sensor for simultaneous measurement of nitrate concentration and temperature,” IEEE Transactions on Instrumentation and Measurement, 2019, 68(11): 4566–4574.

    [26] [26] J. X. Sun, S. Z. Jiang, J. H. Xu, Z. Li, C. H. Li, Y. Jing, et al., “Sensitive and selective surface plasmon resonance sensor employing a gold-supported graphene composite film/D-shaped fiber for dopamine detection,” Journal of Physics D-Applied Physics, 2019, 52(19): 195402.

    [27] [27] N. Cennamo, F. Arcadio, A. Minardo, D. Montemurro, and L. G. Zeni, “Experimental characterization of plasmonic sensors based on lab-built tapered plastic optical fibers,” Applied Sciences, 2020, 10(12): 4389.

    [28] [28] F. Wang, Y. Zhang, M. Lu, Y. Du, M. Chen, S. Meng, et al., “Near-infrared band gold nanoparticles-Au film ‘hot spot’ model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor,” Sensors and Actuators B: Chemical, 2021, 337: 129816.

    [29] [29] X. Xiong, Y. F. Chen, H. Wang, S. Q. Hu, Y. H. Luo, J. L. Dong, et al., “Plasmonic interface modified with graphene oxide sheets overlayer for sensitivity enhancement,” ACS Applied Materials & Interfaces, 2018, 10(41): 34916–34923.

    [30] [30] A. K. Sharma, B. Kaur, and V. A. Popescu, “On the role of different 2D materials/heterostructures in fiber-optic SPR humidity sensor in visible spectral region,” Optical Materials, 2020, 102: 109824.

    [31] [31] C. Li, J. Gao, M. Shafi, R. Liu, Z. Zha, D. Feng, et al., “Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film,” Photonics Research, 2021, 9(3): 379–388.

    [32] [32] J. Wang, G. Y. Chen, X. Wu, H. Xu, T. M. Monro, T. Liu, et al., “Light-sheet skew ray-enhanced localized surface plasmon resonance-based chemical sensing,” ACS Sensors, 2020, 5(1): 127–132.

    [33] [33] M. Cardoso, A. Silva, A. Romeiro, M. Giraldi, J. Costa, J. Santos, et al., “Second-order dispersion sensor based on multi-plasmonic surface resonances in D-shaped photonic crystal fibers,” Photonics, 2021, 8(6): 181.

    [34] [34] J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, et al., “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sensors and Actuators B: Chemical, 2016, 230: 206–211.

    [35] [35] W. Gong, S. Z. Jiang, Z. Li, C. H. Li, J. H. Xu, J. Pan, et al., “Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF,” Optics Express, 2019, 27(3) 3483–3495.

    [36] [36] S. Q. Cao, Y. Shao, Y. Wang, T. S. Wu, L. F. Zhang, Y. J. Huang, et al., “Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber,” Optics Express, 2018, 26(4): 3988–3994.

    [37] [37] T. Wu, Y. Shao, Y. Wang, S. Q. Cao, W. P. Cao, F. Zhang, et al., “Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber,” Optics Express, 2017, 25(17): 20313–20322.

    [38] [38] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik A Hadrons and Nuclei, 1968, 216(4): 398–410.

    [39] [39] E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Zeitschrift für Naturforschung A, 1968, 23(12): 2135–2136.

    [40] [40] A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors, 2015, 15(5): 11499–11510.

    [41] [41] S. Shi, L. Wang, R. Su, B. Liu, R. Huang, W. Qi, et al., “A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays,” Biosensors and Bioelectronics, 2015, 74: 454–460.

    [42] [42] Y. Zheng, T. Lang, B. Cao, J. Jin, R. Dong, and H. Feng, “Fiber optic SPR sensor for human Immunoglobulin G measurement based on the MMF-NCF-MMF structure,” Optical Fiber Technology, 2018, 46: 179–185.

    [43] [43] J. Zhong, S. Liu, T. Zou, W. Yan, M. Zhou, B. Liu, et al., “All fiber-optic immunosensors based on elliptical core helical intermediate-period fiber grating with low-sensitivity to environmental disturbances.” Biosensors, 2022, 12(2): 99.

    [44] [44] Y. Huang, Y. Wang, G. Xu, X. Rao, J. Zhang, X. Wu, et al., “Compact surface plasmon resonance IgG sensor based on H-shaped optical fiber,” Biosensors. 2022, 12(3): 141.

    [45] [45] Z. Luo, Y. Cheng, L. He, Y. Feng, Y. Tian, Z. Chen, et al., “T-shaped aptamer-based LSPR biosensor using Ω-shaped fiber optic for rapid detection of SARS-CoV-2,” Analytical Chemistry, 2023, 95(2): 1599–1607.

    [46] [46] W. Ning, S. Hu, and C. Zhou, “An ultrasensitive J-shaped optical fiber LSPR aptasensor for the detection of Helicobacter pylori,” Analytica Chimica Acta, 2023, 1278: 341733.

    Tools

    Get Citation

    Copy Citation Text

    Ying WANG, Xing RAO, Xun WU, George Y. CHEN, Changrui LIAO, Mateusz Jakub SMIETANA, and Yiping WANG. Highly-Sensitive Polymer Optical Fiber SPR Sensor for Fast Immunoassay[J]. Photonic Sensors, 2024, 14(4): 240413

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 9, 2023

    Accepted: Jan. 31, 2024

    Published Online: Oct. 15, 2024

    The Author Email: CHEN George Y. (gychen@szu.edu.cn)

    DOI:10.1007/s13320-024-0729-x

    Topics