NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040006(2023)
Several problems in determining the QCD phase boundary by relativistic heavy ion collisions
[2] Yin Y. QCD phase structure at high baryon density region[R](2019).
[3] Luo X. Exploring the QCD phase structure with beam energy scan in heavy-ion collisions[J]. Nuclear Physics A, 956, 75-82(2016).
[4] Aoki Y, Endrodi G, Fodor Z et al. The order of the quantum chromodynamics transition predicted by the standard model of particle physics[J]. Nature, 443, 675-678(2006).
[5] DING Hengtong, LI Shengtai, LIU Junhong. Progress on QCD properties in strong magnetic fields from lattice QCD[J]. Nuclear Techniques, 46, 040008(2023).
[6] Masayuki A, Koichi Y. Chiral restoration at finite density and temperature[J]. Nuclear Physics A, 504, 668-684(1989).
[7] Blume C. Search for the critical point and the onset of deconfinement[J]. Central European Journal of Physics, 10, 1245-1253(2012).
[8] Stephanov M, Rajagopal K, Shuryak E. Signatures of the tricritical point in QCD[J]. Physical Review Letters, 81, 4816-4819(1998).
[9] Stephanov M A. Sign of kurtosis near the QCD critical point[J]. Physical Review Letters, 107, 052301(2011).
[10] Friman B, Karsch F, Redlich K et al. Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC[J]. The European Physical Journal C, 71, 1694(2011).
[11] Aggarwal M M, Ahammed Z, Alakhverdyants A V et al. Higher moments of net proton multiplicity distributions at RHIC[J]. Physical Review Letters, 105, 022302(2010).
[12] Adamczyk L, Adkins J K, Agakishiev G et al. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC[J]. Physical Review Letters, 113, 092301(2014).
[13] Adamczyk L, Adkins J K, Agakishiev G et al. Energy dependence of moments of net-proton multiplicity distributions at RHIC[J]. Physical Review Letters, 112, 032302(2014).
[14] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).
[15] Fraga E S, Palhares L F, Sorensen P. Finite-size scaling as a tool in the search for the QCD critical point in heavy ion data[J]. Physical Review C, 84, 011903(2011).
[17] Chen L Z, Zhao Y Y, Pan X et al. High cumulants of conserved charges and their statistical uncertainties[J]. Chinese Physics C, 41, 104103(2017).
[18] Chen L Z, Li Z, Cui F et al. Measurement of the ratio of the sixth order to the second order cumulant of net-proton multiplicity distributions in relativistic heavy-ion collisions[J]. Nuclear Physics A, 957, 60-70(2017).
[19] Chen L Z, Pan X, Xiong F B et al. Statistical and dynamical fluctuations in the ratios of higher net-proton cumulants in relativistic heavy-ion collisions[J]. Journal of Physics G: Nuclear and Particle Physics, 38, 115004(2011).
[20] Pan X, Zhang F, Li Z M et al. Statistical and dynamical parts of the cumulants of conserved charges in relativistic heavy ion collisions[J]. Physical Review C, 89, 014904(2014).
[21] Bzdak A, Koch V. Local efficiency corrections to higher order cumulants[J]. Physical Review C, 91, 027901(2015).
[22] Bzdak A, Koch V, Skokov V. Baryon number conservation and the cumulants of the net proton distribution[J]. Physical Review C, 87, 014901(2013).
[23] Luo X F. Probing the QCD critical point with higher moments of net-proton multiplicity distributions[J]. Journal of Physics: Conference Series, 316, 012003(2011).
[24] Zhang F, Li Z M, Chen L Z et al. The method of mixed events for higher cumulants of conserved charges[EB/OL]. arXiv(2019).
[25] Zhang F, Li Z M, Chen L Z et al. Subtracting non-critical fluctuations in higher cumulants of conserved charges[EB/OL]. arXiv(2019).
[26] Chen L Z, Pan X, Chen X S et al. Critical behavior of higher cumulants of order parameter in the 3D-Ising universality class[J]. Chinese Physics C, 36, 727-732(2012).
[27] Pan X, Chen L Z, Chen X S et al. High-order cumulants from the 3-dimensional O(1, 2, 4) spin models[J]. Nuclear Physics A, 913, 206-216(2013).
[28] Pan X, Chen L Z, Chen X S et al. Cumulants in the 3-dimensional Ising, O(2) and O(4) spin models[J]. Chinese Physics C, 37, 124103(2013).
[29] LIU Yunpeng, ZHUANG Pengfei. Heavy flavor production in relativistic heavy ion collisions[J]. Nuclear Physics Review, 29, 1-13(2012).
[30] Pan X, Xu M M, Wu Y F. Generalized susceptibilities along the phase boundary of the three-dimensional, three-state Potts model[J]. Journal of Physics G: Nuclear and Particle Physics, 42, 015104(2015).
[31] Pan X, Chen L Z, Wu Y F. Behavior and finite-size effects of the sixth order cumulant in the three-dimensional Ising universality class[J]. Chinese Physics C, 40, 093104(2016).
[32] Pan X, Zhang Y H, Chen L Z et al. Finite-size behaviour of generalized susceptibilities in the whole phase plane of the Potts model[J]. Chinese Physics C, 42, 023110(2018).
[33] Lacey R A. Indications for a critical end point in the phase diagram for hot and dense nuclear matter[J]. Physical Review Letters, 114, 142301(2015).
[34] Mukherjee S, Venugopalan R, Yin Y. Real-time evolution of non-Gaussian cumulants in the QCD critical regime[J]. Physical Review C, 92, 034912(2015).
[35] Nahrgang M, Bluhm M, Schäfer T et al. Diffusive dynamics of critical fluctuations near the QCD critical point[J]. Physical Review D, 99, 116015(2019).
[36] Wu S J, Wu Z M, Song H C. Universal scaling of the σ field and net-protons from Langevin dynamics of model A[J]. Physical Review C, 99, 064902(2019).
[37] Berdnikov B, Rajagopal K. Slowing out of equilibrium near the QCD critical point[J]. Physical Review D, 61, 105017(2000).
[38] Pisarski R D, Wilczek F. Remarks on the chiral phase transition in chromodynamics[J]. Physical Review D, 29, 338-341(1984).
[39] de Forcrand P, Philipsen O. Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential[J]. Physical Review Letters, 105, 152001(2010).
[40] Parotto P. Parametrized equation of state for QCD from 3D Ising model[J]. Pos, CPOD2017, 036(2018).
[41] Chen L Z, Li Z M, Wu Y F. Influences of statistics and initial size fluctuation on high-order cumulants of conserved quantities in relativistic heavy ion collisions[J]. Journal of Physics G: Nuclear and Particle Physics, 41, 105107(2014).
[42] Chen L Z, Li Z M, Zhong X et al. Influence of statistics on the measured moments of conserved quantities in relativistic heavy ion collisions[J]. Journal of Physics G: Nuclear and Particle Physics, 42, 065103(2015).
[44] Braun-Munzinger P, Friman B, Karsch F et al. Net charge probability distributions in heavy ion collisions at chemical freeze-out[J]. Nuclear Physics A, 880, 48-64(2012).
[45] Bzdak A, Koch V. Local efficiency corrections to higher order cumulants[J]. Physical Review C, 91, 027901(2015).
[46] Luo X F. Unified description of efficiency correction and error estimation for moments of conserved quantities in heavy-ion collisions[J]. Physical Review C, 91, 034907(2015).
[47] Talapov A L, Blöte H W J. The magnetization of the 3D Ising model[J]. Journal of Physics A: Mathematical and General, 29, 5727-5733(1996).
[48] Pawley G S, Swendsen R H, Wallace D J et al. Monte Carlo renormalization-group calculations of critical behavior in the simple-cubic Ising model[J]. Physical Review B, 29, 4030-4040(1984).
[49] Alexandrou C, Boriçi A, Feo A et al. Deconfinement phase transition in one-flavor QCD[J]. Physical Review D, 60, 034504(1999).
[50] DeGrand T A, DeTar C E. Phase structure of QCD at high temperature with massive quarks and finite quark density: a Z(3) paradigm[J]. Nuclear Physics B, 225, 590-620(1983).
[51] Wu F Y. The potts model[J]. Reviews of Modern Physics, 54, 235-268(1982).
[52] Imry Y. Finite-size rounding of a first-order phase transition[J]. Physical Review B, 21, 2042-2043(1980).
[53] Challa M S S, Landau D P, Binder K. Finite-size effects at temperature-driven first-order transitions[J]. Physical Review B, 34, 1841(1986).
[54] Wu Y F, Chen L Z, Pan X et al. Finite-size behaviour of a critical related observable[J]. Central European Journal of Physics, 10, 1341-1344(2012).
[55] Lacey R A, Liu P, Magdy N et al. Finite-size scaling of non-Gaussian fluctuations near the QCD critical point[EB/OL]. arXiv preprint arXiv(2016).
[56] Wilson K G, Kogut J. The renormalization group and the ε expansion[J]. Physics Reports, 12, 75-199(1974).
[57] Binney J J, Dowrick N J, Fisher A J et al[M]. The theory of critical phenomena: an introduction to the renormalization group(1992).
[58] Nienhuis B, Nauenberg M. First-order phase transitions in renormalization-group theory[J]. Physical Review Letters, 35, 477-479(1975).
[59] Fisher M E, Berker A N. Scaling for first-order phase transitions in thermodynamic and finite systems[J]. Physical Review B, 26, 2507-2513(1982).
[60] Zhang Y H, Zhao Y Y, Chen L Z et al. Locating fixed points in the phase plane[J]. Physical Review E, 100, 052146(2019).
[61] Braun-Munzinger P, Stachel J. The quest for the quark-gluon plasma[J]. Nature, 448, 302-309(2007).
[62] Adams J, Aggarwal M M, Ahammed Z et al. Experimental and theoretical challenges in the search for the quark-gluon plasma: the STAR Collaboration's critical assessment of the evidence from RHIC collisions[J]. Nuclear Physics A, 757, 102-183(2005).
[63] Zhang W N, Xu P Z. Effect of relaxation time on the squeezed correlations of bosons for evolving sources in relativistic heavy-ion collisions[J]. Nuclear Science and Techniques, 33, 22(2022).
[64] Shen C, Yan L. Recent development of hydrodynamic modeling in heavy-ion collisions[J]. Nuclear Science and Techniques, 31, 122(2020).
[65] Wu S J, Shen C, Song H C. Dynamically exploring the QCD matter at finite temperatures and densities: a short review[J]. Chinese Physics Letters, 38, 081201(2021).
[66] WU Shanjin, SONG Huichao. Critical dynamical fluctuations near the QCD critical point[J]. Nuclear Techniques, 46, 040004(2023).
[67] Liu C W, Polkovnikov A, Sandvik A W. Dynamic scaling at classical phase transitions approached through nonequilibrium quenching[J]. Physical Review B, 89, 054307(2014).
[68] Acharyya M. Nonequilibrium phase transition in the kinetic Ising model: critical slowing down and the specific-heat singularity[J]. Physical Review E, 56, 2407-2411(1997).
[69] Newman M E J, Barkema G T[M]. Monte Carlo methods in statistical physics(1999).
[70] Hasenbusch M. Dynamic critical exponent z of the three-dimensional Ising universality class: Monte Carlo simulations of the improved Blume-Capel model[J]. Physical Review E, 101, 022126(2020).
[71] Li Z M. Overview of intermittency analysis in heavy-ion collisions[J]. Modern Physics Letters A, 37, 2230009(2022).
[72] De Wolf E A, Dremin I M, Kittel W. Scaling laws for density correlations and fluctuations in multiparticle dynamics[J]. Physics Reports, 270, 1-141(1996).
[73] Wu J, Lin Y F, Li Z M et al. Intermittency analysis of proton numbers in heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider[J]. Physical Review C, 104, 034902(2021).
[74] Wu J, Lin Y F, Wu Y F et al. Probing QCD critical fluctuations from intermittency analysis in relativistic heavy-ion collisions[J]. Physics Letters B, 801, 135186(2020).
Get Citation
Copy Citation Text
Yuanfang WU, Xiaobing LI, Lizhu CHEN, Zhiming LI, Mingmei XU, Xue PAN, Fan ZHANG, Yanhua ZHANG, Yuming ZHONG. Several problems in determining the QCD phase boundary by relativistic heavy ion collisions[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040006
Category: Research Articles
Received: Dec. 25, 2022
Accepted: --
Published Online: Apr. 27, 2023
The Author Email: