Acta Physica Sinica, Volume. 68, Issue 18, 180701-1(2019)

Statistical compressive sensing based on convolutional Gaussian mixture model

Ren Wang1、*, Jing-Bo Guo2, Jun-Peng Hui1, Ze Wang1, Hong-Jun Liu1, Yuan-Nan Xu1, and Yun-Fo Liu1
Author Affiliations
  • 1China Academy of Launch Vehicle Technology R&D Center, Beijing 100076, China
  • 2Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
  • show less
    References(27)

    [14] Zeiler M D, Krishnan D, Taylor G W, Fergus R[J]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2528(2010).

    [15] Grosse R, Raina R, Kwong H, Ng A Y[J]. Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, 149(2007).

    [16] Yang J, Yu K, Huang T[J]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3517(2010).

    [18] Davis P J[J]. Circulant Matrices(2012).

    [19] Dempster A, Laird N, Rubin D[J]. J. R. Stat. Soc., 39, 1(1977).

    [27] Liu Z W, Luo P, Wang X G, Tang X O[J]. IEEE International Conference on Computer Vision Santiago,, 3730(2015).

    Tools

    Get Citation

    Copy Citation Text

    Ren Wang, Jing-Bo Guo, Jun-Peng Hui, Ze Wang, Hong-Jun Liu, Yuan-Nan Xu, Yun-Fo Liu. Statistical compressive sensing based on convolutional Gaussian mixture model[J]. Acta Physica Sinica, 2019, 68(18): 180701-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 24, 2019

    Accepted: --

    Published Online: Jun. 28, 2020

    The Author Email:

    DOI:10.7498/aps.68.20190414

    Topics