Journal of Advanced Dielectrics, Volume. 12, Issue 6, 2241003(2022)
Effect of Li2CO3 addition on structural and electrical properties of 0.7 BiFeO3–0.3BaTiO3 piezoelectric ceramic
[1] Z. Liu, H. Wu, Y. Yuan, H. Wan, Z. Luo, P. Gao, J. Zhuang, J. Zhang, N. Zhang, J. Li, Y. Zhan, W. Ren, Z.-G. Ye. Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications. Curr. Opin. Solid State Mater. Sci., 26, 101016(2022).
[2] J. Hao, W. Li, J. Zhai, H. Chen. Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R Rep., 135, 1(2019).
[3] P. K. Panda, B. Sahoo, T. S. Thejas, M. Krishna. High d33 Lead-free piezoceramics: A review. J. Electron. Mater., 51, 938(2022).
[4] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, J. Rödel. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev., 4, 041305(2017).
[5] H. Liu, Y.-X. Liu, A. Song, Q. Li, Y. Yin, F.-Z. Yao, K. Wang, W. Gong, B.-P. Zhang, J.-F. Li. (K, Na)NbO3-based lead-free piezoceramics: One more step to boost applications. Natl. Sci. Rev., 9, nwac101(2022).
[6] W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel. Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective. J. Electroceramics, 29, 71(2012).
[7] J. Rödel, J.-F. Li. Lead-free piezoceramics: Status and perspectives. MRS Bull., 576(2018).
[8] D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, I. M. Reaney. BiFeO3 -BaTiO3: A new generation of lead-free electroceramics. J. Adv. Dielectr., 8, 1830004(2018).
[9] J. Chen, J. E. Daniels, J. Jian, Z. Cheng, J. Cheng, J. Wang, Q. Gu, S. Zhang. Origin of large electric-field-induced strain in pseudo-cubic BiFeO3–BaTiO3 ceramics. Acta Mater., 197, 1(2020).
[10] G. Wang, Z. Fan, S. Murakami, Z. Lu, D. A. Hall, D. C. Sinclair, A. Feteira, X. Tan, J. L. Jones, A. K. Kleppe, D. Wang, I. M. Reaney. Origin of the large electrostrain in BiFeO 3-BaTiO3 based lead-free ceramics. J. Mater. Chem. A, 7, 21254(2019).
[11] J. Chen, J. Cheng, J. Guo, Z. Cheng, J. Wang, H. Liu, S. Zhang. Excellent thermal stability and aging behaviors in BiFeO3-BaTiO3 piezoelectric ceramics with rhombohedral phase. J. Am. Ceram. Soc., 103, 374(2020).
[12] I. Calisir, A. K. Kleppe, A. Feteira, D. A. Hall. Quenching-assisted actuation mechanisms in core–shell structured BiFeO3–BaTiO3 piezoceramics. J. Mater. Chem. C, 7, 10218(2019).
[13] S. J. McCartan, I. Calisir, G. W. Paterson, R. W. H. Webster, T. A. Macgregor, D. A. Hall, I. MacLaren. Correlative chemical and structural nanocharacterization of a pseudo-binary 0.75Bi(Fe0. 97Ti0. 03)O 3-0.25BaTiO3 ceramic. J. Am. Ceram. Soc., 104, 2388(2021).
[14] S. O. Leontsev, R. E. Eitel. Dielectric and Piezoelectric Properties in Mn-Modified (1−x)BiFeO3–xBaTiO3 Ceramics. J. Am. Ceram. Soc., 92, 2957(2009).
[15] J. Chen, B. Tong, J. Lin, X. Gao, J. Cheng, S. Zhang. Tailoring the chemical heterogeneity of Mn-modified 0.75BiFeO3-0.25BaTiO3 ceramics for piezoelectric sensor applications. J. Eur. Ceram. Soc., 42, 3857(2022).
[16] X. Xie, Z. Zhou, R. Liang, X. Dong. Superior piezoelectricity in bismuth titanate-based lead-free high-temperature piezoceramics via domain engineering. Adv. Electron. Mater., 8, 2101266(2022).
[17] S. Murakami, D. Wang, A. Mostaed, A. Khesro, A. Feteira, D. C. Sinclair, Z. Fan, X. Tan, I. M. Reaney. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc., 101, 5428(2018).
[18] M. A. Qaiser, X.-Z. Ma, R. Ma, W. Ali, X. Xu, G. Yuan, L. Chen. High-temperature multilayer actuators based on CuO added BiScO3–PbTiO3 piezoceramics and Ag electrodes. J. Am. Ceram. Soc., 102, 5424(2019).
[19] G. F. Fan, M. B. Shi, W. Z. Lu, Y. Q. Wang, F. Liang. Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics. J. Eur. Ceram. Soc., 34, 23(2014).
[20] X.-Y. Tong, J.-J. Zhou, K. Wang, H. Liu, J.-Z. Fang. Low-temperature sintered Bi0. 5Na0. 5TiO3-SrTiO3 incipient piezoceramics and the co-fired multilayer piezoactuator thereof. J. Eur. Ceram. Soc., 37, 4617(2017).
[21] S. Guan, H. Yang, Y. Zhao, R. Zhang. Effect of Li2CO3 addition in BiFeO3-BaTiO3 ceramics on the sintering temperature, electrical properties and phase transition. J. Alloys Compd., 735, 386(2018).
[22] H. Yuan, L. Li, H. Hong, Z. Ying, X. Zheng, L. Zhang, F. Wen, Z. Xu, W. Wu, G. Wang. Low sintering temperature, large strain and reduced strain hysteresis of BiFeO3 –BaTiO3 ceramics for piezoelectric multilayer actuator applications. Ceram. Int., 47, 31349(2021).
[23] S. Guan, H. Yang, G. Qiao, Y. Sun, F. Qin, H. Hou. Effects of Li2CO3 and CuO as composite sintering aids on the structure, piezoelectric properties, and temperature stability of BiFeO3-BaTiO3 Ceramics. J. Electron. Mater., 49, 6199(2020).
[24] Y. Ren, H. Liu, F. Liu, G. Liu. Tuning of electric and magnetic properties of BiFeO3 -SrTiO3 solid solution ceramics by site-specific doping of Mn. J. Alloys Compd., 877, 160239(2021).
[25] L. Hai, H. Liu. Effects of Mn doping on electrical properties of BiFeO3–SrTiO3 solid solution. Solid State Commun., 343, 114652(2022).
[26] H. Liu, Y. Sun. Defect chemistry for Mn-doped and Nb-doped BiFeO3-based ceramics. J. Phys. Chem. Solids, 170, 110951(2022).
[27] J. Chen, J. Cheng. High electric-induced strain and temperature-dependent piezoelectric properties of 0.75BF–0.25BZT lead-free ceramics. J. Am. Ceram. Soc., 99, 536(2016).
[28] D. Fu, Z. Ning, D. Hu, J. Cheng, F. Wang, J. Chen. Large and temperature-insensitive piezoelectric strain in xBiFeO3–(1−x)Ba(Zr0. 05Ti0. 95)O3 lead-free piezoelectric ceramics. J. Mater. Sci., 54, 1153(2019).
[29] Y. Kameshima, M. Irie, A. Yasumori, K. Okada. Low temperature synthesis of AlN by addition of various Li-salts. J. Eur. Ceram. Soc., 24, 3801(2004).
[30] L. Li, N. Zhang, C. Bai, X. Chu, Z. Gui. Multilayer piezoelectric ceramic transformer with low temperature sintering. J. Mater. Sci., 41, 155(2006).
[31] Y.-D. Hou, L.-M. Chang, M.-K. Zhu, X.-M. Song, H. Yan. Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5PZN–0.5PZT systems. J. Appl. Phys., 102, 084507(2007).
Get Citation
Copy Citation Text
Hongbo Liu, Jianguo Chen. Effect of Li2CO3 addition on structural and electrical properties of 0.7 BiFeO3–0.3BaTiO3 piezoelectric ceramic[J]. Journal of Advanced Dielectrics, 2022, 12(6): 2241003
Category: Research Articles
Received: Aug. 18, 2022
Accepted: Sep. 8, 2022
Published Online: Jan. 13, 2023
The Author Email: Jianguo Chen (kpfocus@shu.edu.cn)