Chinese Journal of Lasers, Volume. 49, Issue 5, 0507303(2022)

Quantitative Methods of Brain Tissue Differential Pathlength Factor Based on GS-SVM

Bao Chu1,2, Yao Huang2,3、*, Jingshu Ni2,3, Chijian Zhang1, Zhongsheng Li2,3, Yuanzhi Zhang2,3, Meili Dong2,3, Quanfu Wang2,3, Xia Wang2,3, and Yikun Wang2,3、**
Author Affiliations
  • 1College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China
  • 2Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis & Treatment Technology and Instrument, Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Science, Chinese Academy of Science, Hefei, Anhui 230026, China
  • 3Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Wanjiang Center for Development of Emerging Industrial Technology, Tongling, Anhui 244000, China
  • show less
    Figures & Tables(7)
    Flow chart of brain tissue differential pathlength factor prediction model based on GS-SVM
    SVM parameter selection diagram after grid optimization
    Comparison of prediction results given by Monte Carlo simulation, GS-SVM and BP-ANN prediction models
    Correlation analysis of prediction results given by two prediction models and Monte Carlo simulation. (a) GS-SVM prediction model; (b) BP-ANN prediction model
    • Table 1. Thickness and optical parameters of certain adult brain tissue at 800 nm wavelength

      View table

      Table 1. Thickness and optical parameters of certain adult brain tissue at 800 nm wavelength

      Brain tissueThickness d /cmScattering coefficient μs /cm-1Absorption coefficient μa /cm-1Anisotropy factor gRefractive index n
      Scalp and skull117.50.170.901.4
      Cerebrospinal fluid0.20.10.010.921.4
      Gray matter0.4220.360.891.4
      White matter20910.140.901.4
    • Table 2. Proportion of principal component after dimensionality reduction

      View table

      Table 2. Proportion of principal component after dimensionality reduction

      ComponentProportion of principal component
      PC167.7
      PC210.7
      PC37.9
      PC45.1
      PC55.0
    • Table 3. Comparison of experimental results between BP-ANN and GS-SVM prediction models

      View table

      Table 3. Comparison of experimental results between BP-ANN and GS-SVM prediction models

      Prediction modelMSER2
      GS-SVM0.02680.97
      BP-ANN0.250.92
    Tools

    Get Citation

    Copy Citation Text

    Bao Chu, Yao Huang, Jingshu Ni, Chijian Zhang, Zhongsheng Li, Yuanzhi Zhang, Meili Dong, Quanfu Wang, Xia Wang, Yikun Wang. Quantitative Methods of Brain Tissue Differential Pathlength Factor Based on GS-SVM[J]. Chinese Journal of Lasers, 2022, 49(5): 0507303

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 10, 2021

    Accepted: Dec. 15, 2021

    Published Online: Mar. 9, 2022

    The Author Email: Huang Yao (yhuang@aiofm.ac.cn), Wang Yikun (wyk@aiofm.ac.cn)

    DOI:10.3788/CJL202249.0507303

    Topics