Laser & Optoelectronics Progress, Volume. 56, Issue 12, 122201(2019)
Fast Convergence Stochastic Parallel Gradient Descent Algorithm
Fig. 4. Convergence for single random test and averaging after multiple tests under 800 iterations
Fig. 5. Effects of perturbation amplitude δ and gain coefficient γ on residual wavefront and its optimal fitting curve
Fig. 6. Optimal solution for wavefronts with different initial distortions. (a) Wavefronts with three initial distortion magnitudes; (b) distribution of optimal curve for wavefronts with different initial distortions
Fig. 7. Convergence under different parameter combinations for wavefronts with different initial distortions. (a) 0.3312 rad;(b)0.8448 rad;(c)1.3180 rad
|
|
|
Get Citation
Copy Citation Text
Dongting Hu, Wen Shen, Wenchao Ma, Xinyu Liu, Zhouping Su, Huaxin Zhu, Xiumei Zhang, Lizhi Que, Zhuowei Zhu, Yixin Zhang, Guoqing Chen, Lifa Hu. Fast Convergence Stochastic Parallel Gradient Descent Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(12): 122201
Category: Optical Design and Fabrication
Received: Nov. 29, 2018
Accepted: Jan. 9, 2019
Published Online: Jun. 13, 2019
The Author Email: Hu Lifa (hulifa@jiangnan.edu.cn)