Laser & Optoelectronics Progress, Volume. 56, Issue 12, 122201(2019)

Fast Convergence Stochastic Parallel Gradient Descent Algorithm

Dongting Hu1,2, Wen Shen1,2, Wenchao Ma1,2, Xinyu Liu1,2, Zhouping Su1,2, Huaxin Zhu1,2, Xiumei Zhang1,2, Lizhi Que1,2, Zhuowei Zhu1,2, Yixin Zhang1,2, Guoqing Chen1,2, and Lifa Hu1,2、*
Author Affiliations
  • 1 School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
  • 2 Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Wuxi, Jiangsu 214122, China
  • show less
    Figures & Tables(10)
    Block diagram of adaptive optics system without wavefront detection
    Actuator distribution of 69-actuator deformable mirror
    Flow chart of SPGD algorithm
    Convergence for single random test and averaging after multiple tests under 800 iterations
    Effects of perturbation amplitude δ and gain coefficient γ on residual wavefront and its optimal fitting curve
    Optimal solution for wavefronts with different initial distortions. (a) Wavefronts with three initial distortion magnitudes; (b) distribution of optimal curve for wavefronts with different initial distortions
    Convergence under different parameter combinations for wavefronts with different initial distortions. (a) 0.3312 rad;(b)0.8448 rad;(c)1.3180 rad
    • Table 1. Convergence under different parameter combinations for wavefront with initial distortion RMS of 0.3312 rad

      View table

      Table 1. Convergence under different parameter combinations for wavefront with initial distortion RMS of 0.3312 rad

      AlgorithmSPGDSA
      Disturbanceamplitude δ111N/A
      Gaincoefficient γ-0.7-1-1.3N/A
      Wavefront RMS after800 iterations J800 /rad0.02580.02990.03610.0720
      Convergenceefficiency η /%92.2190.9789.1078.26
    • Table 2. Convergence of different parameter combinations for wavefront with initial distortion RMS of 0.8448 rad

      View table

      Table 2. Convergence of different parameter combinations for wavefront with initial distortion RMS of 0.8448 rad

      AlgorithmSPGDSA
      disturbanceamplitude δ111N/A
      gaincoefficient γ-0.7-1-1.3N/A
      Wavefront RMS after800 iterations J800 /rad0.07080.06450.07360.1338
      Convergenceefficiency η /%91.6292.3791.2984.16
    • Table 3. Convergence of different parameter combinations for wavefront with initial distortion RMS of 1.3180 rad

      View table

      Table 3. Convergence of different parameter combinations for wavefront with initial distortion RMS of 1.3180 rad

      AlgorithmSPGDSA
      Disturbanceamplitude δ111N/A
      Gaincoefficient γ-0.7-1-1.3N/A
      Wavefront RMS after800 iterations J800 /rad0.10980.08950.08770.1718
      Convergenceefficiency η /%91.6593.1793.3286.97
    Tools

    Get Citation

    Copy Citation Text

    Dongting Hu, Wen Shen, Wenchao Ma, Xinyu Liu, Zhouping Su, Huaxin Zhu, Xiumei Zhang, Lizhi Que, Zhuowei Zhu, Yixin Zhang, Guoqing Chen, Lifa Hu. Fast Convergence Stochastic Parallel Gradient Descent Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(12): 122201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Nov. 29, 2018

    Accepted: Jan. 9, 2019

    Published Online: Jun. 13, 2019

    The Author Email: Hu Lifa (hulifa@jiangnan.edu.cn)

    DOI:10.3788/LOP56.122201

    Topics