Journal of Innovative Optical Health Sciences, Volume. 17, Issue 4, 2430003(2024)
Overview of novel nanobiosensors for electrochemical and optical diagnosis of leukemia: Challenge and opportunity
[1] J. Peacock. Leukemia(1999).
[3] U. R. P. FACP MD. Leukemia(2011).
[5] B. Leonard. Leukemia: A Research Report(1998).
[6] D. E. Sabath, S. Maloy, K. Hughes. Brenner’s Encyclopedia of Genetics, 226-227(2013).
[7] J. R. Hupp, T. P. Williams, F. J. Firriolo. Dental Clinical Advisor — E-Book: Dental Clinical Advisor — E-Book(2006).
[8] A. B. Perdana, F. Saputra, M. Aisyi. Update on diagnosis of childhood acute lymphoblastic leukemia (ALL) in Indonesia. Indonesian Journal of Cancer, 14, 115-116(2020).
[9] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult. Electrochemical biosensors — sensor principles and architectures. Sensors, 8, 1400-1458(2008).
[10] T. Hianik. Advances inelectrochemical and acoustic aptamer-based biosensors and immunosensors in diagnostics of leukemia. Biosensors, 11, 177(2021).
[11] Y. Nur, S. Gaffar, Y. W. Hartati, T. Subroto. Applications of electrochemical biosensor of aptamers-based (APTASENSOR) for the detection of leukemia biomarker. Sensing and Bio-Sensing Research, 32, 100416(2021).
[12] V. Perumal, U. Hashim. Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12, 1-15(2014).
[13] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209-249(2021).
[14] M. Mazloum-Ardakani, B. Barazesh, A. Khoshroo, M. Moshtaghiun, M. H. Sheikhha. A new composite consisting of electrosynthesized conducting polymers, graphene sheets and biosynthesized gold nanoparticles for biosensing acute lymphoblastic leukemia. Bioelectrochemistry, 121, 38-45(2018).
[15] M. M. Bordbar, H. Barzegar, J. Tashkhourian, M. Bordbar, B. Hemmateenejad. A non-invasive tool for early detection of acute leukemia in children using a paper-based optoelectronic nose based on an array of metallic nanoparticles. Anal Chim Acta, 1141, 28-35(2021).
[16] A. Banerjee, S. Maity, C. H. Mastrangelo. Nanostructures for biosensing, with a brief overview on cancer detection, IoT, and the role of machine learning in smart biosensors. Sensors, 21, 1253(2021).
[17] N. Nasori, D. Cao, Z. Wang, U. Farahdina, A. Rubiyanto, Y. Lei. Tunning of templated CuWO4 nanorods arrays thickness to improve photoanode water splitting. Molecules, 26, 2900(2021).
[18] X. Gong, Y. Gu, F. Zhang, Z. Liu, Y. Li, G. Chen, B. Wang. High-performance non-enzymatic glucose sensors based on CoNiCu alloy nanotubes arrays prepared by electrodeposition. Frontiers in Materials, 6(2019).
[19] T. Ghoshal, M. T. Shaw, C. T. Bolger, J. D. Holmes, M. A. Morris. A general method for controlled nanopatterning of oxide dots: A microphase separated block copolymer platform. J. Mater. Chem., 22, 12083-12089(2012).
[20] H.-C. Hao, H.-Y. Chang, T.-P. Wang, D.-J. Yao. Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors. J Lab Autom, 18, 69-76(2013).
[21] J. S. Ellis, M. Thompson. Acoustic coupling at multiple interfaces and the liquid phase response of the thickness shear-mode acoustic wave sensor. Chem. Commun. (11), 1310-1311(2004).
[22] M. Y. Azab, M. F. O. Hameed, S. S. A. Obayya. Overview of optical biosensors for early cancer detection: Fundamentals, applications and future perspectives. Biology (Basel), 12, 232(2023).
[23] A. Allegra, C. Petrarca, M. Di Gioacchino, G. Mirabile, S. Gangemi. Electrochemical biosensors in the diagnosis of acute and chronic leukemias. Cancers (Basel), 15, 146(2022).
[24] W. Jia, A. J. Bandodkar, G. Valdés-Ramírez, J. R. Windmiller, Z. Yang, J. Ramírez, G. Chan, J. Wang. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem., 85, 6553-6560(2013).
[25] P. Singh. Reference Module in Life Sciences(2017).
[26] B. Bhattacharyya. Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology, iii(2015).
[27] A. Soleimanian, B. Khalilzadeh, M. Mahdipour, A. R. Aref, A. Kalbasi, S. R. Bazaz, M. E. Warkiani, M. R. Rashidi, M. Mahdavi. An efficient graphene quantum dots-based electrochemical cytosensor for the sensitive recognition of CD123 in acute myeloid leukemia cells. IEEE Sensors Journal, 21, 16451-16463(2021).
[28] M. Afzali, M. R. Mohammad Shafiee, J. Parhizkar. Au nanorods/g-C3N4 composite based biosensor for electrochemical detection of chronic lymphocytic leukemia. Nanomedicine Research Journal, 5, 32-43(2020).
[29] R. Abolhasan, B. Khalilzadeh, H. Yousefi, S. Samemaleki, F. Chakari-Khiavi, F. Ghorbani, R. Pourakbari, A. Kamrani, A. Khataee, T. S. Rad, M. R. Rashidi, M. Yousefi, L. AghebatiMaleki. Ultrasensitive and label free electrochemical immunosensor for detection of ROR1 as an oncofetal biomarker using gold nanoparticles assisted LDH/rGO nanocomposite. Sci Rep, 11, 1-11(2021).
[30] X.-M. Shi, G.-C. Fan, Q. Shen, J.-J. Zhu. Photoelectrochemical DNA biosensor based on dual-signal amplification strategy integrating inorganic–organic nanocomposites sensitization with λ-exonuclease-assisted target recycling. ACS Appl Mater Interfaces, 8, 35091-35098(2016).
[31] S. Zhou, Y. Wang, J.-J. Zhu. Simultaneous detection of tumor cell apoptosis regulators Bcl-2 and bax through a dual-signal-marked electrochemical immunosensor. ACS Appl Mater Interfaces, 8, 7674-7682(2016).
[32] A. Soni, C. M. Pandey, S. Solanki, R. K. Kotnala, G. Sumana. Electrochemical genosensor based on template assisted synthesized polyaniline nanotubes for chronic myelogenous leukemia detection. Talanta, 187, 379-389(2018).
[33] X. Pang, C. Cui, M. Su, Y. Wang, Q. Wei, W. Tan. Construction of self-powered cytosensing device based on ZnO nanodisks@g-C3N4 quantum dots and application in the detection of CCRF-CEM cells. Nano Energy, 46, 101-109(2018).
[34] Y. Sun, Q. Ren, B. Liu, Y. Qin, S. Zhao. Enzyme-free and sensitive electrochemical determination of the FLT3 gene based on a dual signal amplified strategy: Controlled nanomaterial multilayers and a target-catalyzed hairpin assembly. Biosensors and Bioelectronics, 78, 7-13(2016).
[35] M. Zhang, F. Zhou, D. Zhou, D. Chen, H. Hai, J. Li. An aptamer biosensor for leukemia marker mRNA detection based on polymerase-assisted signal amplification and aggregation of illuminator. Anal Bioanal Chem, 411, 139-146(2019).
[36] F. van der Meer. Near-infrared laboratory spectroscopy of mineral chemistry: A review. International Journal of Applied Earth Observation and Geoinformation, 65, 71-78(2018).
[37] Y. Kang, Y.-Z. Wu, X. Hu, X. Xu, J. Sun, R. Geng, T. Huang, X. Liu, Y. Ma, Y. Chen, Q. Wan, X. Qi, G. Zhang, X. Zhao, X. Zeng. Multicolor bioimaging with biosynthetic zinc nanoparticles and their application in tumor detection. Sci Rep, 7, 45313(2017).
[38] J. Tan, N. Yang, Z. Hu, J. Su, J. Zhong, Y. Yang, Y. Yu, J. Zhu, D. Xue, Y. Huang, Z. Lai, Y. Huang, X. Lu, Y. Zhao. Aptamer-functionalized fluorescent silica nanoparticles for highly sensitive detection of leukemia cells. Nanoscale Res Lett, 11, 298(2016).
[39] Y. Manthawornsiri, D. Polpanich, V. Yamkamon, R. Thiramanas, S. Hongeng, B. Rerkamnuaychoke, S. Jootar, P. Tangboriboonrat, K. Jangpatarapongsa. Magnetic nanoparticles PCR enzyme-linked gene assay for quantitative detection of BCR/ABL fusion gene in chronic myelogenous leukemia. Journal of Clinical Laboratory Analysis, 30, 534-542(2016).
[40] M. Hassoun, J. Rüger, T. Kirchberger-Tolstik, I. W. Schie, T. Henkel, K. Weber, D. Cialla-May, C. Krafft, J. Popp. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering. Anal Bioanal Chem, 410, 999-1006(2018).
[41] M. Shamsipur, V. Nasirian, A. Barati, K. Mansouri, A. Vaisi-Raygani, S. Kashanian. Determination of cDNA encoding BCR/ABL fusion gene in patients with chronic myelogenous leukemia using a novel FRET-based quantum dots-DNA nanosensor. Anal Chim Acta, 966, 62-70(2017).
[42] B. Dou, L. Xu, B. Jiang, R. Yuan, Y. Xiang. Aptamer-functionalized and gold nanoparticle array-decorated magnetic graphene nanosheets enable multiplexed and sensitive electrochemical detection of rare circulating tumor cells in whole blood. Anal Chem, 91, 10792-10799(2019).
[43] X. Chen, X. Li, X. Yu, D. Chen, A. Liu. Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods. Spectrochimica Acta Part B: Atomic Spectroscopy, 139, 63-69(2018).
[44] S. Cui, S. Zhang, S. Yue. Raman spectroscopy and imaging for cancer diagnosis. J Healthc Eng, 2018, 8619342(2018).
[45] A. Nonoyama. “Using multiwavelength UV-visible spectroscopy for the characterization of red blood cells,”(2004).
[46] [46] PrabhakarS.,JainN.,SinghR. A., in (2013), p. 5.
[47] K. J. Goswami, N. Sen Sarma. ‘Click’ Reaction-mediated silk Fibroin-functionalized thiol-branched graphene oxide quantum dots for smart sensing of tetracycline. ACS Omega, 8, 21914-21928(2023).
[48] K. J. Goswami, A. Boruah, N. Sen Sarma. Smart-phone-assisted optical biosensors based on silk-Fibroin-decorated reduced graphene oxide quantum dots for fluorescent turn-on recognition of l-dopa. ACS Appl. Nano Mater., 6, 10191-10201(2023).
[49] K. J. Goswami, B. Gogoi, N. S. Sarma. Reduced graphene quantum dot based versatile platform for l-dopa sensing: Fluorescence turn-on, filter paper, and air-stable flexible electronic devices. Sensors and Actuators B: Chemical, 350, 130892(2022).
[50] A. Tamashevski, Y. Harmaza, E. Slobozhanina, R. Viter, I. Iatsunskyi. Photoluminescent detection of human T-lymphoblastic cells by ZnO nanorods. Molecules, 25, 3168(2020).
[51] H. Mollasalehi, E. Shajari. A colorimetric nano-biosensor for simultaneous detection of prevalent cancers using unamplified cell-free ribonucleic acid biomarkers. Bioorganic Chemistry, 107, 104605(2021).
[52] V. Moisoiu, A. Stefancu, S. D. Iancu, T. Moisoiu, L. Loga, L. Dican, C. D. Alecsa, I. Boros, A. Jurj, D. Dima, C. Bagacean, R. Tetean, E. Burzo, C. Tomuleasa, F. Elec, N. Leopold. SERS assessment of the cancer-specific methylation pattern of genomic DNA: Towards the detection of acute myeloid leukemia in patients undergoing hematopoietic stem cell transplantation. Anal Bioanal Chem, 411, 7907-7913(2019).
[53] M. Shamsipur, L. Samandari, L. Farzin, F. Molaabasi, M. H. Mousazadeh. Dual-modal label-free genosensor based on hemoglobin@gold nanocluster stabilized graphene nanosheets for the electrochemical detection of BCR/ABL fusion gene. Talanta, 217, 121093(2020).
[54] K. Y. P. dos Santos Avelino, I. A. M. Frías, N. Lucena-Silva, C. A. S. de Andrade, M. D. L. de Oliveira. Impedimetric gene assay for BCR/ABL transcripts in plasmids of patients with chronic myeloid leukemia. Microchim Acta, 185, 415(2018).
[55] W. Yin, D.-H. Lee, J. Choi, C. Park, S. M. Cho. Screen printing of silver nanoparticle suspension for metal interconnects. Korean J. Chem. Eng., 25, 1358-1361(2008).
[56] S. Dayneko, A. Tameev, M. Tedoradze, I. Martynov, P. Linkov, P. Samokhvalov, I. Nabiev, A. Chistyakov. Physics, Simulation, and Photonic Engineering of Photovoltaic Devices III, 149-156(2014).
[57] C. Xue, S. Wang, D. Wen, G. Wang, Y. Wang. Tribological performance of nanocomposite carbon lubricant additive. Materials, 12, 149(2019).
[58] J. Wu, K. Jiang, X. Wang, C. Wang, C. Zhang. On-off-on gold nanocluster-based near infrared fluorescent probe for recognition of Cu(II) and vitamin C. Microchim Acta, 184, 1315-1324(2017).
[59] W. Yuan, Z. Lu, C. M. Li. Self-assembling microsized materials to fabricate multifunctional hierarchical nanostructures on macroscale substrates. J. Mater. Chem. A, 1, 6416-6424(2013).
[60] H. Y. Woo, D. W. Lee, T. Y. Yoon, J. B. Kim, J.-Y. Chae, T. Paik. Sub-100-nm nearly monodisperse n-Paraffin/PMMA phase change nanobeads. Nanomaterials, 11, 204(2021).
[61] T. T. V. Nguyen, X. Xie, J. Xu, Y. Wu, M. Hong, X. Liu. Plasmonic bimetallic nanodisk arrays for DNA conformation sensing. Nanoscale, 11, 19291-19296(2019).
[62] P.-Y. Chang, K. Bindumadhavan, R.-A. Doong. Size effect of ordered mesoporous carbon nanospheres for anodes in Li-ion battery. Nanomaterials, 5, 2348-2358(2015).
[63] N. Nasori, T. Dai, X. Jia, A. Rubiyanto, D. Cao, S. Qu, Z. Wang, Z. Wang, Y. Lei. Realizing super-long Cu2O nanowires arrays for high-efficient water splitting applications with a convenient approach. J. Semicond., 40, 052701(2019).
[64] I. Khan, K. Saeed, I. Khan. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908-931(2019).
[65] K. Y. P. S. Avelino, I. A. M. Frias, N. Lucena-Silva, R. G. Gomes, C. P. de Melo, M. D. L. Oliveira, C. A. S. Andrade. Attomolar electrochemical detection of the BCR/ABL fusion gene based on an amplifying self-signal metal nanoparticle-conducting polymer hybrid composite. Colloids and Surfaces B: Biointerfaces, 148, 576-584(2016).
[66] P. V. Baptista. RNA quantification using noble metal nanoprobes: Simultaneous identification of several different mRNA targets using color multiplexing and application to chronic myeloid leukemia diagnostics. Methods Mol Biol, 2118, 251-268(2020).
[67] Y. A. Grechkin, S. L. Grechkina, E. A. Zaripov, S. V. Fedorenko, A. R. Mustafina, M. V. Berezovski. Aptamer-conjugated Tb(III)-doped silica nanoparticles for luminescent detection of leukemia cells. Biomedicines, 8, 14(2020).
[68] X. He, Y. Zhu, L. Yang, Z. Wang, Z. Wang, J. Feng, X. Wen, L. Cheng, R. Zhu. MgFe-LDH nanoparticles: A promising leukemia inhibitory factor replacement for self-renewal and pluripotency maintenance in cultured Mm stem cells. Advanced Science, 8, 2003535(2021).
[69] C. M. Pandey, S. Dewan, S. Chawla, B. K. Yadav, G. Sumana, B. D. Malhotra. Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection. Analytica Chimica Acta, 937, 29-38(2016).
[70] P. Jiang, Y. Wang, L. Zhao, C. Ji, D. Chen, L. Nie. Applications of gold nanoparticles in non-optical biosensors. Nanomaterials, 8, 977(2018).
[71] T. Maxwell, M. G. Nogueira Campos, S. Smith, M. Doomra, Z. Thwin, S. Santra, E. J. Chung, L. Leon, C. Rinaldi. Nanoparticles for Biomedical Applications, 243-265(2020).
[72] X. Yang, X. An, S. Ling, H. Huang, Y. Zhang, G. Chen, C. Li, Q. Wang. A cascade targeted and activatable NIR-II nanoprobe for highly sensitive detection of acute myeloid leukemia in an orthotopic model. CCS Chemistry, 3, 895-903(2020).
[73] M. Fang, K. Zhuo, Y. Chen, Y. Zhao, G. Bai, J. Wang. Fluorescent probe based on carbon dots/silica/molecularly imprinted polymer for lysozyme detection and cell imaging. Anal Bioanal Chem, 411, 5799-5807(2019).
[74] M. Nejadmansouri, M. Majdinasab, G. S. Nunes, J. L. Marty. An overview of optical and electrochemical sensors and biosensors for analysis of antioxidants in food during the last 5 years. Sensors, 21, 1176(2021).
[75] L. A. Lamont, F. Pacheco-Torgal, M. V. Diamanti, A. Nazari, C.-G. Granqvist. Nanotechnology in Eco-Efficient Construction, 270-296(2013).
[76] P. Gulati, P. Kaur, M. V. Rajam, T. Srivastava, P. Mishra, S. S. Islam. Single-wall carbon nanotube based electrochemical immunoassay for leukemia detection. Analytical Biochemistry, 557, 111-119(2018).
[77] A. S. Ghrera, C. M. Pandey, B. D. Malhotra. Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection. Sensors and Actuators B: Chemical, 266, 329-336(2018).
[78] A. Soni, C. M. Pandey, M. K. Pandey, G. Sumana. Highly efficient polyaniline-MoS2 hybrid nanostructures based biosensor for cancer biomarker detection. Analytica Chimica Acta, 1055, 26-35(2019).
[79] M. Amouzadeh Tabrizi, M. Shamsipur, R. Saber, S. Sarkar. Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using MWCNTs-Pdnano/PTCA/aptamer as labeled aptamer for the signal amplification. Anal Chim Acta, 985, 61-68(2017).
[80] S. Mathew, E. K. Radhakrishnan, K. A. Abd-Elsalam. Silver Nanomaterials for Agri-Food Applications, 125-146(2021).
[81] W. Zhang. Poly(indole-5-carboxylic acid)-functionalized ZnO nanocomposite for electrochemical DNA hybridization detection. J Solid State Electrochem, 20, 499-506(2016).
[82] A. Khoshroo, L. Hosseinzadeh, K. Adib, M. Rahimi-Nasrabadi, F. Ahmadi. Earlier diagnoses of acute leukemia by a sandwich type of electrochemical aptasensor based on copper sulfide-graphene composite. Analytica Chimica Acta, 1146, 1-10(2021).
[83] Z.-Y. Zhang, L.-X. Huang, Z.-W. Xu, P. Wang, Y. Lei, A.-L. Liu. Efficient determination of PML/RARα fusion gene by the electrochemical DNA biosensor based on carbon dots/graphene oxide nanocomposites. Int J Nanomedicine, 16, 3497-3508(2021).
[84] [84] KausarA., in (2021).
[85] N. K. Bakirhan, S. A. Ozkan, C. Mustansar Hussain. Handbook of Nanomaterials for Industrial Applications, 520-529(2018).
[86] F. H. Haghighi, R. Binaymotlagh, S. Z. Mirahmadi-Zare, H. Hadadzadeh. Aptamer/magnetic nanoparticles decorated with fluorescent gold nanoclusters for selective detection and collection of human promyelocytic leukemia (HL-60) cells from a mixture. Nanotechnology, 31, 025605(2020).
[87] B. Zhang, B. Zhang. Amorphous and Nano Alloys Electroless Depositions, 141-289(2016).
[88] S. P. Stagon, H. Huang. Syntheses and applications of small metallic nanorods from solution and physical vapor deposition. Nanotechnology Reviews, 2, 259-267(2013).
[89] S.-C. Wei, M. N. Hsu, C.-H. Chen. Plasmonic droplet screen for single-cell secretion analysis. Biosensors and Bioelectronics, 144, 111639(2019).
[90] H. Park, D. J. Shin, J. Yu. Categorization of quantum dots, clusters, nanoclusters, and nanodots. J. Chem. Educ., 98, 703-709(2021).
[91] M. Mazloum-Ardakani, B. Barazesh, S. M. Moshtaghiun. A distinguished cancer-screening package containing a DNA sensor and an aptasensor for early and certain detection of acute lymphoblastic leukemia. Clin Chim Acta, 497, 41-47(2019).
[92] Y. Hernández, B. C. Galarreta, R. M. Fratila, J. M. De La Fuente. Nanomaterials for Magnetic and Optical Hyperthermia Applications, 83-109(2019).
[93] J. Liu, M. Cui, L. Niu, H. Zhou, S. Zhang. Enhanced peroxidase-like properties of graphene–Hemin-composite decorated with Au nanoflowers as electrochemical aptamer biosensor for the detection of K562 leukemia cancer cells. Chemistry – A European Journal, 22, 18001-18008(2016).
[94] T. Yu, H. Zhang, Z. Huang, Z. Luo, N. Huang, S. Ding, W. Feng. A simple electrochemical aptamer cytosensor for direct detection of chronic myelogenous leukemia K562 cells. Electroanalysis, 29, 828-834(2017).
[95] K. İçöz, A. Eken, S. Çınar, A. Murat, S. Özcan, E. Ünal, G. Deniz. Immunomagnetic separation of B type acute lymphoblastic leukemia cells from bone marrow with flow cytometry validation and microfluidic chip measurements. Separation Science and Technology, 56, 2659-2666(2021).
[96] A. Nath, A. J. Trexler, P. Koo, A. D. Miranker, W. M. Atkins, E. Rhoades. Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs. Methods Enzymol, 472, 89-117(2010).
[97] A. Ostróżka-Cieślik, B. Sarecka-Hujar, A. M. Grumezescu. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, 139-158(2017).
[98] J. Cai, H. Shen, Y. Wang, Y. Peng, S. Tang, Y. Zhu, Q. Liu, B. Li, G. Xie, W. Feng. A dual recognition strategy for accurate detection of CTCs based on novel branched PtAuRh trimetallic nanospheres. Biosensors and Bioelectronics, 176, 112893(2021).
[99] K. Komori, Y. Komatsu, M. Nakane, Y. Sakai. Bioelectrochemical detection of histamine release from basophilic leukemia cell line based on histamine dehydrogenase-modified cup-stacked carbon nanofibers. Bioelectrochemistry, 138, 107719(2021).
[100] P. Hashemi, A. Afkhami, B. Baradaran, R. Halabian, T. Madrakian, F. Arduini, T. A. Nguyen, H. Bagheri. Well-orientation strategy for direct immobilization of antibodies: Development of the immunosensor using the boronic acid-modified magnetic graphene nanoribbons for ultrasensitive detection of lymphoma cancer cells. Anal. Chem., 92, 11405-11412(2020).
[101] C. Liu, B. Wang, T. Han, D. Shi, G. Wang. Fe foil-guided fabrication of uniform Ag@AgX nanowires for sensitive detection of Leukemia DNA. ACS Appl. Mater. Interfaces, 11, 4820-4825(2019).
[102] Y. Yu, J. Lin, D. Lin, S. Feng, W. Chen, Z. Huang, H. Huang, R. Chen. Leukemia cells detection based on electroporation assisted surface-enhanced Raman scattering. Biomed Opt Express, 8, 4108-4121(2017).
[103] Y. Peng, H. Shen, S. Tang, Z. Huang, Y. Hao, Z. Luo, F. Zhou, T. Wang, W. Feng. Colorimetric determination of BCR/ABL fusion genes using a nanocomposite consisting of Au@Pt nanoparticles covered with a PAMAM dendrimer and acting as a peroxidase mimic. Mikrochim Acta, 185, 401(2018).
[104] Y. Yu, S. Duan, J. He, W. Liang, J. Su, J. Zhu, N. Hu, Y. Zhao, X. Lu. Highly sensitive detection of leukemia cells based on aptamer and quantum dots. Oncol Rep, 36, 886-892(2016).
[105] B.-Z. Chi, C.-L. Wang, Z.-Q. Wang, T. Pi, X.-L. Zhong, C.-Q. Deng, Y.-C. Feng, Z.-M. Li. Fluorometric determination of the activity of the biomarker terminal deoxynucleotidyl transferase via the enhancement of the fluorescence of silver nanoclusters by in-situ grown DNA tails. Microchim Acta, 186, 241(2019).
[106] B. Guo, W. Cheng, Y. Xu, X. Zhou, X. Li, X. Ding, S. Ding. A simple surface plasmon resonance biosensor for detection of PML/RARα based on heterogeneous fusion gene-triggered nonlinear hybridization chain reaction. Sci Rep, 7, 14037(2017).
[107] R.-I. Stefan-van Staden, L.-R. Balahura, L. A. Gugoasa, J. F. van Staden, H. Y. Aboul-Enein, M.-C. Rosu, S. M. Pruneanu. Pattern recognition of 8-hydroxy-2′-deoxyguanosine in biological fluids. Anal Bioanal Chem, 410, 115-121(2018).
[108] M. C. Giuffrida, G. Cigliana, G. Spoto. Ultrasensitive detection of lysozyme in droplet-based microfluidic devices. Biosensors and Bioelectronics, 104, 8-14(2018).
[109] A. A. Ensafi, M. Amini, B. Rezaei, M. Talebi. A novel diagnostic biosensor for distinguishing immunoglobulin mutated and unmutated types of chronic lymphocytic leukemia. Biosens Bioelectron, 77, 409-415(2016).
[110] K. Sugawara, S. Ishizaki, K. Kodaira, H. Kuramitz, T. Kadoya. Fabrication of a cell-recognition/electron-transfer/cross-linker, peptide-immobilized electrode for the sensing of K562 cells. Analytica Chimica Acta, 1116, 53-61(2020).
[111] Y. Zheng, X. Wang, S. He, Z. Gao, Y. Di, K. Lu, K. Li, J. Wang. Aptamer-DNA concatamer-quantum dots based electrochemical biosensing strategy for green and ultrasensitive detection of tumor cells via mercury-free anodic stripping voltammetry. Biosensors and Bioelectronics, 126, 261-268(2019).
[112] M. Shamsipur, M. B. Gholivand, H. Ehzari, A. Pashabadi, E. Arkan, K. Mansouri. Single frequency impedance strategy employed in rapid detection of leukemia cancer cells using an electrospun PES-nanofiber reinforced ternary composite-based cytosensor. Electrochimica Acta, 283, 1498-1506(2018).
[113] C. Liu, S. C. B. Gopinath, T. Lakshmipriya, P. Anbu. Covalent conjugation of reduced graphene oxide with oligos for current–volt signal determination on leukemia. Appl Phys A, 126, 599(2020).
[114] S. M. Khoshfetrat, M. A. Mehrgardi. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry, 114, 24-32(2017).
[115] M. H. Akhtar, K. K. Hussain, N. G. Gurudatt, Y.-B. Shim. Detection of Ca2+-induced acetylcholine released from leukemic T-cells using an amperometric microfluidic sensor. Biosens Bioelectron, 98, 364-370(2017).
[116] J. Li, X. Lin, Z. Zhang, W. Tu, Z. Dai. Red light-driven photoelectrochemical biosensing for ultrasensitive and scatheless assay of tumor cells based on hypotoxic AgInS2 nanoparticles. Biosensors and Bioelectronics, 126, 332-338(2019).
[117] H. Gao, J. Zhang, X. Wei, Q. Zhu, T. Wei. Enhanced electrochemiluminescence cytosensing based on abundant oxygen vacancies contained 2D nanosheets emitter coupled with DNA device cycle-amplification. Talanta, 228, 122230(2021).
[118] M. Amouzadeh Tabrizi, M. Shamsipur, R. Saber, S. Sarkar. Isolation of HL-60 cancer cells from the human serum sample using MnO2-PEI/Ni/Au/aptamer as a novel nanomotor and electrochemical determination of thereof by aptamer/gold nanoparticles-poly(3,4-ethylene dioxythiophene) modified GC electrode. Biosens Bioelectron, 110, 141-146(2018).
[119] M. Su, L. Ge, S. Ge, N. Li, J. Yu, M. Yan, J. Huang. Paper-based electrochemical cyto-device for sensitive detection of cancer cells and in situ anticancer drug screening. Analytica Chimica Acta, 847, 1-9(2014).
[120] M. K. Yazdi, E. Ghazizadeh, A. Neshastehriz. Different liposome patterns to detection of acute leukemia based on electrochemical cell sensor. Anal Chim Acta, 1109, 122-129(2020).
[121] G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assunção, J. Rosa, P. V. Baptista. Noble Metal Nanoparticles for Biosensing Applications. Sensors, 12, 1657-1687(2012).
[122] H. K. Choi, M.-J. Lee, S. N. Lee, T.-H. Kim, B.-K. Oh. Noble metal nanomaterial-based biosensors for eectrochemical and optical detection of viruses causing respiratory illnesses. Frontiers in Chemistry, 9(2021).
[123] S. B. Chaney, S. Shanmukh, R. A. Dluhy, Y.-P. Zhao. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Applied Physics Letters, 87, 031908(2005).
[124] S. Guo, E. Wang. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today, 6, 240-264(2011).
[125] S. K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H. S. Nalwa. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv., 9, 8778-8881(2019).
[126] L. Lu, X. Hu, Z. Zhu, D. Li, S. Tian, Z. Chen. Review — electrochemical sensors and biosensors modified with binary nanocomposite for food safety. J. Electrochem. Soc., 167, 037512(2019).
[127] L. Wang, Y. Zhang, C. Cheng, X. Liu, H. Jiang, X. Wang. Highly sensitive electrochemical biosensor for evaluation of oxidative stress based on the nanointerface of graphene nanocomposites blended with gold, Fe3O4, and platinum nanoparticles. ACS Appl. Mater. Interfaces, 7, 18441-18449(2015).
[128] N. Shoaie, M. Daneshpour, M. Azimzadeh, S. Mahshid, S. M. Khoshfetrat, F. Jahanpeyma, A. Gholaminejad, K. Omidfar, M. Foruzandeh. Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: A review on recent advances. Microchim Acta, 186, 465(2019).
[129] O. R. Obisesan, A. S. Adekunle, J. A. O. Oyekunle, T. Sabu, T. T. I. Nkambule, B. B. Mamba. Development of electrochemical nanosensor for the detection of malaria parasite in clinical samples. Frontiers in Chemistry, 7(2019).
[130] N. A. Ferdiana, H. H. Bahti, D. Kurnia, S. Wyantuti. Synthesis, characterization, and electrochemical properties of rare earth element nanoparticles and its application in electrochemical nanosensor for the detection of various biomolecules and hazardous compounds: A review. Sensing and Bio-Sensing Research, 41, 100573(2023).
[131] H. Kaviani, J. Barvestani. Photonic crystal based biosensor with the irregular defect for detection of blood plasma. Applied Surface Science, 599, 153743(2022).
[132] Ankita, S. Bissa, B. Suthar, C. Nayak, A. Bhargava. An improved optical biosensor design using defect/metal multilayer photonic crystal for malaria diagnosis. Results in Optics, 9, 100304(2022).
[133] [133] KhanW.,SharmaR.,SainiP., in (2016).
[134] H. Wang, Y. Liu, H. Liu, Z. Chen, P. Xiong, X. Xu, F. Chen, K. Li, Y. Duan. Effect of various oxidants on reaction mechanisms, self-limiting natures and structural characteristics of Al2O3 films grown by atomic layer deposition. Advanced Materials Interfaces, 5, 1701248(2018).
[135] Z. Jaksic, J. Matovic. Functionalization of artificial freestanding composite nanomembranes. Materials, 3(2010).
[136] J. Mittra, G. Abraham, M. Kesaria, S. Bahl, R. Singh, S. Shivaprasad, C. Viswanadham, U. Kulkarni, G. Dey. Role of substrate temperature in the pulsed laser deposition of Zirconium Oxide thin film. Materials Science Forum, 710, 757-761(2012).
[137] [137] HishimoneP.,NagaiH.,SatoM., in (2020).
[138] V. Pokropivny, R. Lõhmus, I. nova, A. Pokropivny, S. Vlassov. Introduction in Nanomaterials and Nanotechnology(2007).
[139] V. Zulfa, N. Nasori, U. Farahdina, M. Firdhaus, I. Aziz, H. Suprihatin, M. Rhomadhoni, A. Rubiyanto. Highly sensitive ZnO/Au nanosquare arrays electrode for glucose biosensing by electrochemical and optical detection. Molecules, 28, 617(2023).
[140] Y. Chen, S. Lu, S. Zhang, Y. Li, Z. Qu, Y. Chen, B. Lu, X. Wang, X. Feng. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv, 3, e1701629(2017).
[141] D. Verma, K. R. Singh, A. K. Yadav, V. Nayak, J. Singh, P. R. Solanki, R. P. Singh. Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosensors and Bioelectronics: X, 11, 100153(2022).
[142] D. T. Phan, C. H. Nguyen, T. D. P. Nguyen, L. H. Tran, S. Park, J. Choi, B. Lee, J. Oh. A flexible, wearable, and wireless biosensor patch with internet of medical things applications. Biosensors, 12, 139(2022).
[143] A. A. Smith, R. Li, Z. T. H. Tse. Reshaping healthcare with wearable biosensors. Sci Rep, 13, 4998(2023).
[144] J. Kim, J. R. Sempionatto, S. Imani, M. C. Hartel, A. Barfidokht, G. Tang, A. S. Campbell, P. P. Mercier, J. Wang. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Advanced Science, 5, 1800880(2018).
[145] Y.-R. Lin, C.-C. Hung, H.-Y. Chiu, P.-H. Chang, B.-R. Li, S.-J. Cheng, J.-W. Yang, S.-F. Lin, G.-Y. Chen. Noninvasive glucose monitoring with a contact lens and smartphone. Sensors, 18, 3208(2018).
[146] D. G. Jung, D. Jung, S. H. Kong. A lab-on-a-chip-based non-invasive optical sensor for measuring glucose in saliva. Sensors, 17, 2607(2017).
[147] J. Kim, G. Valdés-Ramírez, A. J. Bandodkar, W. Jia, A. G. Martinez, J. Ramírez, P. Mercier, J. Wang. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst, 139, 1632-1636(2014).
[148] P. Tseng, B. Napier, L. Garbarini, D. L. Kaplan, F. G. Omenetto. Functional, RF-trilayer sensors for tooth-mounted, wireless monitoring of the oral cavity and food consumption. Advanced Materials, 30, 1703257(2018).
[149] Y. Song, D. Feng, W. Shi, X. Li, H. Ma. Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells as well as green gram sprouts. Talanta, 116, 237-244(2013).
[150] O. S. ElMitwalli, O. A. Barakat, R. M. Daoud, S. Akhtar, F. Z. Henari. Green synthesis of gold nanoparticles using cinnamon bark extract, characterization, and fluorescence activity in Au/eosin Y assemblies. J Nanopart Res, 22, 309(2020).
[151] S. Ying, Z. Guan, P. C. Ofoegbu, P. Clubb, C. Rico, F. He, J. Hong. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336(2022).
[152] J. Auclair, F. Gagné. Shape-dependent toxicity of silver nanoparticles on freshwater cnidarians. Nanomaterials, 12, 3107(2022).
Get Citation
Copy Citation Text
Ulya Farahdina, Tahta Amrillah, Mashuri Mashuri, Vannajan Sanghiran Lee, Agus Rubiyanto, Nasori Nasori. Overview of novel nanobiosensors for electrochemical and optical diagnosis of leukemia: Challenge and opportunity[J]. Journal of Innovative Optical Health Sciences, 2024, 17(4): 2430003
Category: Research Articles
Received: Oct. 27, 2023
Accepted: Jan. 24, 2024
Published Online: Aug. 1, 2024
The Author Email: Nasori Nasori (nat.nasori@physics.its.ac.id)