Chinese Journal of Lasers, Volume. 48, Issue 21, 2101005(2021)

Highly Efficient Passively Q-switched Laser Based on Yb∶YAG/YAG/Cr∶YAG/YAG Composite Crystal

Yongzhi Li1,2, Meng Zhang1,2, Dongyu Yan1,2, Guang Zhu3, Yuxi Chu1,2、*, and Minglie Hu1,2
Author Affiliations
  • 1Ultrafast Laser Laboratory, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-Electronic Information Technology, Ministry of Education, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 3Guoke Century Laser Technology (Tianjin) Co., Ltd., Tianjin 300072, China
  • show less
    References(36)

    [1] Liu X M, Cui Y D. Revealing the behavior of soliton buildup in a mode-locked laser[J]. Advanced Photonics, 1, 016003(2019).

    [2] Qin Z P, Xie G Q, Gu H et al. Mode-locked 2.8-μm fluoride fiber laser: from soliton to breathing pulse[J]. Advanced Photonics, 1, 065001(2019).

    [3] Song Y F, Wang Z H, Wang C et al. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives[J]. Advanced Photonics, 2, 024001(2020).

    [4] Ding Z X, Huang Z N, Chen Y et al. All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator[J]. Advanced Photonics, 2, 026002(2020).

    [5] Teğin U, Rahmani B, Kakkava E et al. Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2, 056005(2020).

    [6] Kofler H, Tauer J, Tartar G et al. An innovative solid-state laser for engine ignition[J]. Laser Physics Letters, 4, 322-327(2007).

    [7] Jisoo K, Soomin M, Youngin P et al. Optimization of a passively Q-switched Yb∶YAG laser ignitor pumped by a laser diode with low power and long pulse width[J]. Current Optics and Photonics, 4, 127-133(2020).

    [8] Dascalu T, Croitoru G, Grigore O et al. High-peak-power passively Q-switched Nd∶YAG/Cr 4+∶YAG composite laser with multiple-beam output[J]. Photonics Research, 4, 267-271(2016).

    [9] Pavel N, Bärwinkel M, Heinz P et al. Laser ignition-Spark plug development and application in reciprocating engines[J]. Progress in Quantum Electronics, 58, 1-32(2018).

    [10] Tsunekane M, Inohara T, Ando A et al. High peak power, passively Q-switched microlaser for ignition of engines[J]. IEEE Journal of Quantum Electronics, 46, 277-284(2010).

    [11] Phuoc T X. Laser-induced spark ignition fundamental and applications[J]. Optics and Lasers in Engineering, 44, 351-397(2006).

    [14] Ishizuki H, Taira T. High-gain mid-infrared optical-parametric generation pumped by microchip laser[J]. Optics Express, 24, 1046-1052(2016).

    [15] Zhao H, Wang H Y, Zhu S Q et al. 578.5 nm end-pumped passively Q-switched Raman yellow laser[J]. Laser & Optoelectronics Progress, 58, 0114004(2021).

    [16] Lei H, Liu Q, Wang Y et al. Passively Q-switched pulse laser with large core size crystal waveguide near diffraction-limit beam quality output[J]. Acta Optica Sinica, 41, 1214001(2021).

    [17] Han X H, Xia K G, Li G Y et al. 3.2 ns high peak power radially polarized pulsed output from passively Q-switched microchip laser with composite structure of YAG/Nd∶YAG/Cr 4+∶YAG crystal[J]. Chinese Journal of Lasers, 42, 0702010(2015).

    [18] Li M L, Wang N, Hou W et al. End-close-pumped passively Q-switched composite Nd∶YAG/Cr 4+∶YAG laser[J]. Journal of Russian Laser Research, 36, 43-47(2015).

    [19] Chen Z J, Zhu S Q, Chen Y J et al. Comparison of passively Q-switched LD side-pumped green laser by using Nd 3+∶YAG/Cr 4+∶YAG/YAG composite crystals of different initial transmissions[J]. Optics & Laser Technology, 54, 362-366(2013).

    [22] Gao X H, Wu L Z. Passively Q-switched solid state monolithic laser based on composite Nd∶YAG/Cr∶YAG crystal[J]. Laser & Optoelectronics Progress, 56, 061401(2019).

    [23] Wang Y, Jiang M H, Hui Y L et al. Passively Q-switched Nd∶YAG/Cr 4+∶YAG microchip laser with low time jitter and high repetition rate[J]. Acta Optica Sinica, 38, 1014004(2018).

    [24] Bibeau C, Beach R J, Mitchell S C et al. High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb∶YAG laser[J]. IEEE Journal of Quantum Electronics, 34, 2010-2019(1998).

    [25] Dong J, Deng P, Liu Y et al. Passively Q-switched Yb∶YAG laser with Cr 4+∶YAG as the saturable absorber[J]. Applied Optics, 40, 4303-4307(2001).

    [26] Šulc J, Jelínková H, Nejezchleb K et al. Generation of 1.6 ns Q-switched pulses based on Yb∶YAG/Cr microchip laser[J]. Proceedings of SPIE, 9513, 951317(2015).

    [27] Dong J, Ren Y Y, Wang G Y et al. Efficient laser performance of Yb∶Y3Al5O12/Cr 4+∶Y3Al5O12 composite crystals[J]. Laser Physics Letters, 10, 105817-105822(2013).

    [28] Dong J, Ren Y Y, Cheng H H. >1 MW peak power, an efficient Yb∶YAG/Cr 4+∶YAG composite crystal passively Q-switched laser[J]. Laser Physics, 24, 055801-055805(2014).

    [29] Zhang Z H, Cheng X J, Wang J L et al. Amplification characteristic of low temperature Yb∶YAG crystal disc cooled by alcohol[J]. Chinese Journal of Lasers, 38, 0702013(2011).

    [30] Jiang W, Liu Y M, Chen W D et al. Composite Yb∶YAG/Cr 4+∶YAG/YAG crystal passively Q-switched lasers at 1030 nm[J]. Applied Optics, 54, 1834-1838(2015).

    [31] Li J Z, Zhu S Q. High-peak-power short-pulse laser using a Yb∶YAG/Cr 4+∶YAG/YAG composite crystal[J]. Optik, 176, 630-635(2019).

    [32] Xu J, Dong J. Effect of a codoped interface layer on passively Q-switched laser performance of composite crystals[J]. Applied Optics, 55, 6516-6522(2016).

    [33] Ren Y Y, Dong J. Passively Q-switched microchip lasers based on Yb∶YAG/Cr 4+∶YAG composite crystal[J]. Optics Communications, 312, 163-167(2014).

    [34] Tsunekane M, Taira T. Temperature and polarization dependences of Cr∶YAG transmission for passive Q-switching[C]. //Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, June 2-4, 2009, Baltimore, Maryland, JTuD8(2009).

    [35] Koerner J, Vorholt C, Liebetrau H et al. Measurement of temperature-dependent absorption and emission spectra of Yb∶YAG, Yb∶LuAG, and Yb∶CaF2 between 20 ℃ and 200 ℃ and predictions on their influence on laser performance[J]. Journal of the Optical Society of America B, 29, 2493-2502(2012).

    [36] Dong J, Ueda K I, Yang P Z. Multi-pulse oscillation and instabilities in microchip self-Q-switched transverse-mode laser[J]. Optics Express, 17, 16980-16993(2009).

    Tools

    Get Citation

    Copy Citation Text

    Yongzhi Li, Meng Zhang, Dongyu Yan, Guang Zhu, Yuxi Chu, Minglie Hu. Highly Efficient Passively Q-switched Laser Based on Yb∶YAG/YAG/Cr∶YAG/YAG Composite Crystal[J]. Chinese Journal of Lasers, 2021, 48(21): 2101005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Mar. 15, 2021

    Accepted: Apr. 19, 2021

    Published Online: Nov. 5, 2021

    The Author Email: Chu Yuxi (chuyuxi@tju.edu.cn)

    DOI:10.3788/CJL202148.2101005

    Topics