INFRARED, Volume. 46, Issue 6, 1(2025)

Infrared Differential Detectors: A New Paradigm Beyond the Limits of BLIP

Wei LU, Xiang-yang LI, Ning LI, Yan ZHANG, Ding MA, Ji-qiang WANG, Hong-lou ZHEN, Xiao-hao ZHOU, and Shao-wei WANG
Author Affiliations
  • State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    References(30)

    [1] [1] Rogalski A. Infrared and Terahertz Detectors, Third Edition[M]. Boca Raton: CRC Press, 2019.

    [2] [2] Saleem M I, Kyaw A K K, Hur J. Infrared Photodetectors: Recent Advances and Challenges Toward Innovation for Image Sensing Applications[J].Advanced Optical Materials, 2024,12(33): 2401625.

    [3] [3] Exosens. Infrared Glossary[EB/OL]. www.exosens.com/all-technologies/infrared-technology/in-frared-glossary, 2025.

    [4] [4] Balter S, Ergun D, Tscholl E, et al. Digital Subtraction Angiography: Fundamental Noise Characteristics[J].Radiology, 1984,152(1): 195-198.

    [5] [5] RP Photonics. Balanced Photodetection[EB/OL]. www.rp-photonics.com/balanced_photodetection.html, 2025.

    [6] [6] Teledyne Vision Solutions. Full Well Capacity and Pixel Saturation[EB/OL]. www.teledynevisionsolutions.com/learn/learning-center/imaging-fundamentals/full-well-capacity-and-pixel-saturation, 2025.

    [7] [7] Hamamatsu Photonics. Full Well Capacity[EB/OL]. www.hamamatsu.com/eu/en/support/glossary/f.html, 2025.

    [8] [8] Keysight Technologies. What Is Averaging in Signal Processing[EB/OL]. www.keysight.com/used/in/en/knowledge/glossary/oscilloscopes/what-is-averaging-in-signal-processing, 2025.

    [9] [9] Xu C, Zhang L, Huang S, et al. Sensing and Tracking Enhanced by Quantum Squeezing[J].Photonics Research, 2019,7(6): 14-26.

    [10] [10] Kamada K, Ito Y, Ichihara S, et al. Noise Reduction and Signal-to-Noise Ratio Improvement of Atomic Magnetometers with Optical Gradiometer Configurations[J].Optics Express, 2015,23(5): 6976-6987.

    [12] [12] Gunapala S D, Bandara S V, Liu J K, et al. Quantum Well Infrared Photodetector Research and Development at Jet Propulsion Laboratory[J].Infrared Physics & Technology, 2001,42(3-5): 267-282.

    [13] [13] Costard E, Bois P, Rossi A D, et al. QWIP Detectors and Thermal Imagers[J].Comptes Rendus Physique, 2003,4(10): 1089-1102.

    [14] [14] Gunapala S D, Bandara S V, Liu J K, et al. 1024×1024 Pixel Mid-Wavelength and Long-Wavelength Infrared QWIP Focal Plane Arrays for Imaging Applications[J].Semiconductor Science and Technology, 2005,20(5): 473.

    [15] [15] Costard E, Nedelcu A, Marcadet X, et al. QWIP Development Status at Thales Research and Technology[C].SPIE, 2006,6206: 62060D.

    [16] [16] Costard E, Bois P. THALES Long Wave QWIP Thermal Imagers[J].Infrared Physics & Technology, 2007,50(2-3): 260-269.

    [17] [17] Choi K K, Forrai D P, Endres D, et al. C-QWIP Focal Plane Array Sensitivity[C].SPIE, 2009,7298: 729807.

    [18] [18] Jhabvala M, Choi K, Waczynski A, et al. Performance of the QWIP Focal Plane Arrays for NASA′s Landsat Data Continuity Mission[C].SPIE, 2011,8012: 80120Q.

    [19] [19] Choi K K, Jhabvala M D, Forrai D P, et al. Electromagnetic Modeling and Design of Quantum Well Infrared Photodetectors[J].IEEE Journal of Selected Topics in Quantum Electronics, 2013,19(5): 3800310.

    [20] [20] Markham B, Storey J, Morfitt R. Landsat-8 Sensor Characterization and Calibration[J].Remote Sensing, 2015,7(3): 2279-2282.

    [21] [21] Jing Y L, Li Z F, Li Q, et al. Pixel-Level Plasmonic Microcavity Infrared Photodetector[J].Scientific Reports, 2016,6(1): 25849.

    [22] [22] Choi K K, Allen S C, Sun J G, et al. Resonant Detectors and Focal Plane Arrays for Infrared Detection[J].Infrared Physics & Technology, 2017,84: 94-101.

    [23] [23] Choi K K, Allen S C, Sun J G, et al. Small Pitch Resonator-QWIP Detectors and Arrays[J].Infrared Physics & Technology, 2018,94: 118-125.

    [24] [24] Nie X, Zhen H, Huang G, et al. Strongly Polarized Quantum Well Infrared Photodetector with Metallic Cavity for Narrowband Wavelength Selective Detection[J].Applied Physics Letters, 2020,116(16): 161107.

    [25] [25] Dong T, Yin Y, Nie X, et al. Narrow-Band and Peak Responsivity Enhanced Metal Microcavity Quantum Well Infrared Detector[J].Applied Physics Letters, 2022,121(7): 073507.

    [26] [26] Trainor D A, Heinrich F, Buberl T, et al. Broadband Interferometric Subtraction of Optical Fields[J].Optics Express, 2019,27(3): 2432-2443.

    [27] [27] Luciuk D, Gahbauer F, Gildener-Leapman A, et al. A Miniaturized Magnetic Gradiometer with a High Common-Mode Rejection Ratio[J].Scientific Reports, 2017,7(1): 43771.

    [28] [28] RP Photonics. Common-Path Interferometers[EB/OL]. www.rp-photonics.com/common_path_interferometers.html, 2025.

    [29] [29] Stanford Research Systems. About Lock-In Amplifiers[EB/OL]. www.thinksrs.com/downloads/pdfs/applicationnotes/AboutLIAs.pdf, 2025.

    [30] [30] Fisher R A. On the Mathematical Foundations of Theoretical Statistics[J].Philosophical Transactions of the Royal Society of London: Series A, 1922,222: 309-368.

    [31] [31] Casella G, Berger R L. Statistical Inference (2nd Edition)[M]. Boca Raton: CRC Press, 2002.

    Tools

    Get Citation

    Copy Citation Text

    LU Wei, LI Xiang-yang, LI Ning, ZHANG Yan, MA Ding, WANG Ji-qiang, ZHEN Hong-lou, ZHOU Xiao-hao, WANG Shao-wei. Infrared Differential Detectors: A New Paradigm Beyond the Limits of BLIP[J]. INFRARED, 2025, 46(6): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 18, 2025

    Accepted: Jul. 3, 2025

    Published Online: Jul. 3, 2025

    The Author Email:

    DOI:11.3969/j.issn.1672-8785.2025.06.001

    Topics