Laser & Optoelectronics Progress, Volume. 55, Issue 9, 91407(2018)
Experimental Study of the Dual-Frequency Laser Based on the Nd∶YVO4/Nd∶GdVO4 Combined Crystal
[1] [1] Li P P, Zheng N, Kang P C, et al. Overview and inspiration of global 5G spectrum researches[J]. Telecommunication Engineering, 2017, 57(6): 734-740.
[2] [2] Liu G P. Research on development strategy of radio spectrum resource management[D]. Jinan: Shandong University of Finance and Economics, 2016: 1-6.
[3] [3] Xi Y J. Radio spectrum resources[J]. GNSS World of China, 2002, 27(5): 40-43.
[4] [4] Huang Z J. Optical carried microwave/millimeter-wave transmission technology[D]. Hangzhou: Zhejiang University, 2012: 1-3.
[5] [5] Tonda-Goldstein S, Dolfi D, Monsterleet A, et al. Optical signal processing in Radar systems[J]. IEEE Transactions on Microwave Theory & Techniques, 2006, 54(2): 847-853.
[6] [6] Chen J, Zhu H, Xia W, et al. Self-mixing birefringent dual-frequency laser Doppler velocimeter[J]. Optics Express, 2017, 25(2): 560-572.
[7] [7] Huo J W. All-Optical frequency up and down-conversion for millimeter-wave over fiber systems[D]. Beijing: Beijing University of Posts and Telecommunications, 2011: 1-6.
[8] [8] Danion G, Hamel C, Frein L, et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes[J]. Optics Express, 2014, 22(15): 17673-17678.
[9] [9] Rolland A, Frein L, Vallet M, et al. 40-GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1738-1740.
[10] [10] Pillet G, Morvan L, Ménager L, et al. Dual-frequency laser phase locked at 100 GHz[J]. Journal of Lightwave Technology, 2014, 32(20): 3824-3830.
[11] [11] Hu M, Zhang H, Zhang F, et al. Thermally induced frequency difference characteristics of dual-frequency microchip laser used optical generation millimeter-wave[J]. Acta Physica Sinica, 2013, 62(20): 204205.
[12] [12] Mckay A, Dawes J M. Microwave generation using a dual-helicoidally-polarized ceramic microchip laser[C]∥International Topical Meeting on Microwave Photonics Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference, September 09-October 03, 2008, Gold Coast, Qld, Australia. New York: IEEE, 2008: 263-266.
[13] [13] Wang R Y, Li Y F. Dual-polarization spatial-hole-burning-free microchip laser[J]. IEEE Photonics Technology Letters, 2009, 21(17): 1214-1216.
[14] [14] Hu M, Huang Q F, Zhang H, et al. Spectral and frequency difference characteristics of the LD-pumped dual-frequency solid-state laser[J]. Journal of Optoelectronics·Laser, 2014, 25(3): 472-477.
[15] [15] Dai R, Hu M, Cai M L, et al. Experimental study of thermally induced frequency difference tuning of Nd∶YVO4 microchip dual frequency lasers[J]. Chinese Journal of Lasers, 2017, 44(1): 0101003.
[16] [16] Huang Y J, Cho H H, Su K W, et al. Exploring a diffusion-bonded Nd∶YVO4/Nd∶GdVO4 crystal for generating an efficient diode-end-pumped dual-spectral-band laser[C]∥Advanced Solid State Lasers, October 04-09, 2015, Berlin, Germany. Washington: Optical Society of America, 2015: ATu1A.7.
[17] [17] Délen X, Balembois F, Georges P. Temperature dependence of the emission cross section of Nd∶ YVO4 around 1064 nm and consequences on laser operation[J]. Journal of the Optical Society of America B, 2011, 28(5): 972-976.
Get Citation
Copy Citation Text
Jin Tao, Hu Miao, Li Peng, Fan Hongdan, Han Ning, Feng Bing, Ou Jun, Zhou Xuefang, Yang Guowei, Lu Yang, Bi Meihua. Experimental Study of the Dual-Frequency Laser Based on the Nd∶YVO4/Nd∶GdVO4 Combined Crystal[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91407
Category: Lasers and Laser Optics
Received: Apr. 7, 2018
Accepted: --
Published Online: Sep. 8, 2018
The Author Email: