Journal of Synthetic Crystals, Volume. 51, Issue 5, 841(2022)
p-Type and n-Type Doping of Single Crystal Diamond
[3] [3] ARAUJO D, SUZUKI M, LLORET F, et al. Diamond for electronics: materials, processing and devices[J]. Materials, 2021, 14(22): 7081.
[4] [4] UMEZAWA H. Recent advances in diamond power semiconductor devices[J]. Materials Science in Semiconductor Processing, 2018, 78: 147-156.
[7] [7] XIE C, LU X T, TONG X W, et al. Ultrawide-bandgap semiconductors: recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors[J]. Advanced Functional Materials, 2019, 29(9): 1970057.
[8] [8] LU Y J, LIN C N, SHAN C X. Optoelectronic diamond: growth, properties, and photodetection applications[J]. Advanced Optical Materials, 2018, 6(20): 1800359.
[9] [9] PENG J H, ZENG J W, XIAO Y, et al. Novel conversion annealing pretreatment for improved deposition of diamond coatings onto WC-Co cemented carbide[J]. Journal of Alloys and Compounds, 2022, 893: 162325.
[11] [11] KOIZUMI S, WATANABE K, HASEGAWA M, et al. Ultraviolet emission from a diamond pn junction[J]. Science, 2001, 292(5523): 1899-1901.
[12] [12] KASU M, UEDA K, YAMAUCHI Y, et al. Diamond-based RF power transistors: fundamentals and applications[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 1010-1015.
[13] [13] KOIZUMI S, UMEZAWA H, PERNOT J, et al. Power electronics device applications of diamond semiconductors[M]. Woodhead publishing, 2018.
[14] [14] KOBASHI K, NISHIMURA K, KAWATE Y, et al. Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: morphology and growth of diamond films[J]. Physical Review B, Condensed Matter, 1988, 38(6): 4067-4084.
[15] [15] OKUSHI H. High quality homoepitaxial CVD diamond for electronic devices[J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 281-288.
[16] [16] SEKI Y, HOSHINO Y, NAKATA J. Extremely high-efficient activation of acceptor boron introduced by ion implantation at room temperature with various doping concentrations in epitaxially synthesized diamond films by chemical vapor deposition[J]. Journal of Applied Physics, 2021, 129(19): 195702.
[17] [17] NIE S Y, SHEN W, SHEN S N, et al. Effects of vacancy and hydrogen on the growth and morphology of N-type phosphorus-doped diamond surfaces[J]. Applied Sciences, 2021, 11(4): 1896.
[18] [18] NEBEL C E, YANG N J, YAMASAKI S. Diamond: carbon at its best[J]. Carbon, 2021, 182: 711-714.
[19] [19] SHIGEMATSU S, OISHI T, SEKI Y, et al. Schottky barrier diodes fabricated on high-purity type-IIa CVD diamond substrates using an all-ion-implantation process[J]. Japanese Journal of Applied Physics, 2021, 60(5): 050903.
[20] [20] SCOTT E A, HATTAR K, BRAUN J L, et al. Orders of magnitude reduction in the thermal conductivity of polycrystalline diamond through carbon, nitrogen, and oxygen ion implantation[J]. Carbon, 2020, 157: 97-105.
[21] [21] SMITH J M, MEYNELL S A, BLESZYNSKI JAYICH A C, et al. Colour centre generation in diamond for quantum technologies[J]. Nanophotonics, 2019, 8(11): 1889-1906.
[22] [22] LHMANN T, RAATZ N, JOHN R, et al. Screening and engineering of colour centres in diamond[J]. Journal of Physics D: Applied Physics, 2018, 51(48): 483002.
[23] [23] FONTAINE F, UZAN-SAGUY C, PHILOSOPH B, et al. Boron implantation/in situ annealing procedure for optimal p-type properties of diamond[J]. Applied Physics Letters, 1996, 68(16): 2264-2266.
[24] [24] UZAN-SAGUY C, KALISH R, WALKER R, et al. Formation of delta-doped, buried conducting layers in diamond, by high-energy, B-ion implantation[J]. Diamond and Related Materials, 1998, 7(10): 1429-1432.
[25] [25] COLLINS A T, WILLIAMS A S. The nature of the acceptor centre in semiconducting diamond[J]. Journal of Physics C: Solid State Physics, 1971, 4(13): 1789-1800.
[26] [26] FONTAINE F. Calculation of the hole concentration in boron-doped diamond[J]. Journal of Applied Physics, 1999, 85(3): 1409-1422.
[27] [27] MORTET V, PERNOT J, JOMARD F, et al. Properties of boron-doped epitaxial diamond layers grown on (110) oriented single crystal substrates[J]. Diamond and Related Materials, 2015, 53: 29-34.
[28] [28] TALLAIRE A, VALENTIN A, MILLE V, et al. Growth of thick and heavily boron-doped (113)-oriented CVD diamond films[J]. Diamond and Related Materials, 2016, 66: 61-66.
[29] [29] MORTET V, TAYLOR A, LAMBERT N, et al. Properties of boron-doped (113) oriented homoepitaxial diamond layers[J]. Diamond and Related Materials, 2021, 111: 108223.
[30] [30] YAMANAKA S, TAKEUCHI D, WATANABE H, et al. Low-compensated boron-doped homoepitaxial diamond films[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 956-959.
[31] [31] YAP C M, ANSARI K, XIAO S, et al. Properties of near-colourless lightly boron doped CVD diamond[J]. Diamond and Related Materials, 2018, 88: 118-122.
[32] [32] TSUBOUCHI N, OGURA M, KATO H, et al. p-type doping by B ion implantation into diamond at elevated temperatures[J]. Diamond and Related Materials, 2006, 15(1): 157-159.
[33] [33] INUSHIMA T, MATSUSHITA T, OHYA S, et al. Hopping conduction via the excited states of boron in p-type diamond[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 1066-1070.
[34] [34] KALISH R, UZAN-SAGUY C, PHILOSOPH B, et al. Nitrogen doping of diamond by ion implantation[J]. Diamond and Related Materials, 1997, 6(2/3/4): 516-520.
[35] [35] HASEGAWA M, TAKEUCHI D, YAMANAKA S, et al. n-type control by sulfur ion implantation in homoepitaxial diamond films grown by chemical vapor deposition[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 12B): L1519-L1522.
[36] [36] PRINS J F. The nature of radiation damage in diamond: activation of oxygen donors[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 1275-1281.
[37] [37] PRINS J F. N-type semiconducting diamond by means of oxygen-ion implantation[J]. Physical Review B, 2000, 61(11): 7191-7194.
[38] [38] KOIZUMI S, KAMO M, SATO Y, et al. Growth and characterization of phosphorous doped{111}homoepitaxial diamond thin films[J]. Applied Physics Letters, 1997, 71(8): 1065-1067.
[39] [39] KATO H, MAKINO T, YAMASAKI S, et al. n-type diamond growth by phosphorus doping on (001)-oriented surface[J]. Journal of Physics D: Applied Physics, 2007, 40(20): 6189-6200.
[40] [40] HASEGAWA M, TERAJI T, KOIZUMI S. Lattice location of phosphorus in n-type homoepitaxial diamond films grown by chemical-vapor deposition[J]. Applied Physics Letters, 2001, 79(19): 3068-3070.
[41] [41] KATO H, TAKEUCHI D, TOKUDA N, et al. Electrical activity of doped phosphorus atoms in (001) n-type diamond[J]. Physica Status Solidi (a), 2008, 205(9): 2195-2199.
[42] [42] KATAGIRI M, ISOYA J, KOIZUMI S, et al. Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition[J]. Applied Physics Letters, 2004, 85(26): 6365-6367.
[43] [43] LIU D Y, HAO L C, CHEN Z A, et al. Sulfur regulation of boron doping and growth behavior for high-quality diamond in microwave plasma chemical vapor deposition[J]. Applied Physics Letters, 2020, 117(2): 022101.
[44] [44] VOLPE P N, PERNOT J, MURET P, et al. High hole mobility in boron doped diamond for power device applications[J]. Applied Physics Letters, 2009, 94(9): 092102.
[45] [45] NICLEY S S. The boron doping of single crystal diamond for high power diode applications[D]. Michigan State University, 2015.
[46] [46] TERAJI T, WADA H, YAMAMOTO M, et al. Highly efficient doping of boron into high-quality homoepitaxial diamond films[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 602-606.
[47] [47] GABRYSCH M, MAJDI S, HALLN A, et al. Compensation in boron-doped CVD diamond[J]. Physica Status Solidi (a), 2008, 205(9): 2190-2194.
[48] [48] GROTJOHN T, NICLEY S, TRAN D, et al. Single crystal boron-doped diamond synthesis[J]. MRS Proceedings, 2009, 1203: 1203-J17.
[49] [49] BRESNEHAN M. Microwave plasma chemical vapor deposition of homoepitaxial diamond for M-i-P diodes: a study of reactor design, growth kinetics, and surface morphology[D]. 2010.
[50] [50] PERNOT J, VOLPE P N, OMNS F, et al. Hall hole mobility in boron-doped homoepitaxial diamond[J]. Physical Review B, 2010, 81(20): 205203.
[51] [51] DENISENKO A V, MELNIKOV A A, ZAITSEV A M, et al. p-type semiconducting structures in diamond implanted with boron ions[J]. Materials Science and Engineering: B, 1992, 11(1/2/3/4): 273-277.
[52] [52] TOKUDA N, UMEZAWA H, SAITO T, et al. Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 767-770.
[53] [53] OHMAGARI S, SRIMONGKON K, YAMADA H, et al. Low resistivity p+ diamond (100) films fabricated by hot-filament chemical vapor deposition[J]. Diamond and Related Materials, 2015, 58: 110-114.
[54] [54] UZAN-SAGUY C, CYTERMANN C, BRENER R, et al. Damage threshold for ion-beam induced graphitization of diamond[J]. Applied Physics Letters, 1995, 67(9): 1194-1196.
[55] [55] PRINS J F. Electrical conduction in diamond after vacancy generation by means of carbon-ion implantation[J]. Applied Physics Letters, 2000, 76(15): 2095-2097.
[56] [56] PRINS J F. Activation of boron-dopant atoms in ion-implanted diamonds[J]. Physical Review B, Condensed Matter, 1988, 38(8): 5576-5584.
[57] [57] VOGEL T, MEIJER J, ZAITSEV A. Highly effective p-type doping of diamond by MeV-ion implantation of boron[J]. Diamond and Related Materials, 2004, 13(10): 1822-1825.
[58] [58] TSUBOUCHI N, OGURA M, HORINO Y, et al. Low-resistance p+ layer formation into diamond using heavily B ion implantation[J]. Applied Physics Letters, 2006, 89(1): 012101.
[59] [59] TSUBOUCHI N, OGURA M. Enhancement of dopant activation in B-implanted diamond by high-temperature annealing[J]. Japanese Journal of Applied Physics, 2008, 47(9): 7047-7051.
[60] [60] TSUBOUCHI N, OGURA M, MIZUOCHI N, et al. Electrical properties of a B doped layer in diamond formed by hot B implantation and high-temperature annealing[J]. Diamond and Related Materials, 2009, 18(2/3): 128-131.
[61] [61] SEKI Y, HOSHINO Y, NAKATA J. Remarkable p-type activation of heavily doped diamond accomplished by boron ion implantation at room temperature and subsequent annealing at relatively low temperatures of 1150 and 1 300 ℃[J]. Applied Physics Letters, 2019, 115(7): 072103.
[62] [62] SEKI Y, HOSHINO Y, NAKATA J. Electrical properties and conduction mechanisms of heavily B+-ion-implanted type IIa diamond: effects of temperatures during the ion implantation and postannealing upon electrical conduction[J]. Japanese Journal of Applied Physics, 2020, 59(2): 021003.
[63] [63] OKANO K, KOIZUMI S, SILVA S R P, et al. Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond[J]. Nature, 1996, 381(6578): 140-141.
[64] [64] KATO H, OGURA M, MAKINO T, et al. N-type control of single-crystal diamond films by ultra-lightly phosphorus doping[J]. Applied Physics Letters, 2016, 109(14): 142102.
[65] [65] PINAULT-THAURY M A, STENGER I, GILLET R, et al. Attractive electron mobility in (113) n-type phosphorus-doped homoepitaxial diamond[J]. Carbon, 2021, 175: 254-258.
[66] [66] PINAULT-THAURY M A, TEMGOUA S, GILLET R, et al. Phosphorus-doped (113) CVD diamond: a breakthrough towards bipolar diamond devices[J]. Applied Physics Letters, 2019, 114(11): 112106.
[67] [67] SHEN W, SHEN S N, LIU S, et al. Binding of hydrogen to phosphorus dopant in phosphorus-doped diamond surfaces: a density functional theory study[J]. Applied Surface Science, 2019, 471: 309-317.
[68] [68] KATO H, BARJON J, HABKA N, et al. Energy level of compensator states in (001) phosphorus-doped diamond[J]. Diamond and Related Materials, 2011, 20(7): 1016-1019.
[69] [69] PINAULT-THAURY M A, STENGER I, JOMARD F, et al. Electrical activity of (100) n-type diamond with full donor site incorporation of phosphorus[J]. Physica Status Solidi (a), 2015, 212(11): 2454-2459.
[70] [70] STENGER I, PINAULT-THAURY M A, TEMAHUKI N, et al. Electron mobility in (100) homoepitaxial layers of phosphorus-doped diamond[J]. Journal of Applied Physics, 2021, 129(10): 105701.
[71] [71] GROTJOHN T A, TRAN D T, YARAN M K, et al. Heavy phosphorus doping by epitaxial growth on the (111) diamond surface[J]. Diamond and Related Materials, 2014, 44: 129-133.
[72] [72] OHTANI R, YAMAMOTO T, JANSSENS S D, et al. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond[J]. Applied Physics Letters, 2014, 105(23): 232106.
[73] [73] KATAMUNE Y, MORI D C, ARIKAWA D, et al. n-type doping of diamond by hot-filament chemical vapor deposition growth with phosphorus incorporation[J]. Applied Physics A, 2020, 126(11): 1-6.
[74] [74] KOCINIEWSKI T, BARJON J, PINAULT M A, et al. n-type CVD diamond doped with phosphorus using the MOCVD technology for dopant incorporation[J]. Physica Status Solidi (a), 2006, 203(12): 3136-3141.
[75] [75] LIU X B, CHEN X, SINGH D J, et al. Boron-oxygen complex yields n-type surface layer in semiconducting diamond[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 7703-7711.
[76] [76] DAS D, KANDASAMI A, RAMACHANDRA RAO M S. Realization of highly conducting n-type diamond by phosphorus ion implantation[J]. Applied Physics Letters, 2021, 118(10): 102102.
[77] [77] DAS D, RAO M S R. N+-ion implantation induced enhanced conductivity in polycrystalline and single crystal diamond[J]. RSC Advances, 2021, 11(38): 23686-23699.
Get Citation
Copy Citation Text
NIU Keyan, ZHANG Xuan, CUI Boyao, MA Yongjian, TANG Wenbo, WEI Zhipeng, ZHANG Baoshun. p-Type and n-Type Doping of Single Crystal Diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 841
Category:
Received: Nov. 3, 2021
Accepted: --
Published Online: Jul. 7, 2022
The Author Email: Keyan NIU (1835266165@qq.com)
CSTR:32186.14.