Computer Applications and Software, Volume. 42, Issue 4, 142(2025)

RESEARCH ON CID PATIENT CLASSIFICATION BASED ON MULTIMODAL FEATURE INTEGRATION ALGORITHM

Zhou Wenjun1, Ou Jing1, Gong Liang2, and Peng Bo1
Author Affiliations
  • 1School of Computer Science, Southwest Petroleum University, Chengdu 610000, Sichuan, China
  • 2Chengdu Second People's Hospital, Chengdu 610000, Sichuan, China
  • show less
    References(14)

    [3] [3] Baglioni C, Riemann D. Is chronic insomnia a precursor to major depression? Epidemiological and biological findings[J]. Current Psychiatry Reports, 2012, 14(5): 511-518.

    [4] [4] Mollayeva T, Thurairajah P, Burton K, et al. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: A systematic review and meta-analysis[J]. Sleep Medicine Reviews, 2016, 25: 52-73.

    [5] [5] Morgan V, Price R, Arain A, et al. Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG[J]. NeuroImage, 2004, 21(1): 473-481.

    [6] [6] Zhang T, Zhao Z, Zhang C, et al. Classification of early and late mild cognitive impairment using functional brain network of resting-state fMRI[J]. Frontiers in Psychiatry, 2019, 10: 572.

    [11] [11] Byra M, Wu M, Zhang X D, et al. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning[J]. Magnetic Resonance in Medicine, 2020, 83(3): 1109-1122.

    [12] [12] Biswal B, Yetkin F Z, Haughton V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magnetic Resonance in Medicine, 1995, 34(4): 537-541.

    [13] [13] Zang Y F, He Y, Zhu C Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain & Development, 2007, 29(2): 83-91.

    [14] [14] Zou Q H, Zhu C Z, Yang Y H, et al. An improved approach to detection of Amplitude of Low-Frequency Fluctuation (ALFF) for resting-state fMRI: Fractional ALFF[J]. Journal of Neuroscience Methods, 2008, 172(1): 137-141.

    [15] [15] Zang Y F, Jiang T Z, Lu Y L, et al. Regional homogeneity approach to fMRI data analysis[J]. NeuroImage, 2004, 22 (1): 394-400.

    [17] [17] Wang C H, Zhao L, Luo Y S, et al. Structural covariance in subcortical stroke patients measured by automated MRI-based volumetry[J]. Neuroimage Clin, 2019, 22: 101682.

    [18] [18] Machhale K, Nandpuru H B, Kapur V, et al. MRI brain cancer classification using hybrid classifier (SVM-KNN)[C]//International Conference on Industrial Instrumentation and Control, 2015: 60-65.

    [21] [21] Wu X D, Kumar V, Quinlan J R, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008, 14(1): 1-37.

    [22] [22] Lee K, Cao X. Bayesian group selection in logistic regression with application to MRI dataanalysis[EB]. arXiv: 1912.01833, 2019.

    [23] [23] Wu W T, Li D N, Du J Y, et al. An Intelligent diagnosis method of brain MRI tumor segmentation using deep convolutional neural network and SVM algorithm[J]. Computational and Mathematical Methods in Medicine, 2020, 2020: 6789306.

    Tools

    Get Citation

    Copy Citation Text

    Zhou Wenjun, Ou Jing, Gong Liang, Peng Bo. RESEARCH ON CID PATIENT CLASSIFICATION BASED ON MULTIMODAL FEATURE INTEGRATION ALGORITHM[J]. Computer Applications and Software, 2025, 42(4): 142

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 1, 2021

    Accepted: Aug. 25, 2025

    Published Online: Aug. 25, 2025

    The Author Email:

    DOI:10.3969/j.issn.1000-386x.2025.04.022

    Topics