Chinese Journal of Lasers, Volume. 51, Issue 17, 1710002(2024)

Semantic Segmentation of Large‑Scale Laser Point Cloud in Mines Based on Local Feature Enhancement

Hongxiang Dong1, Yi An1,2、*, Lirong Xie1, Zhiyong Yang3, and Kai Zhang1
Author Affiliations
  • 1School of Electrical Engineering, Xinjiang University, Urumqi 830017, Xinjiang , China
  • 2School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning , China
  • 3Xinjiang Tianchi Energy Co., Ltd., Fukang831500, Xinjiang , China
  • show less
    Figures & Tables(15)
    LFE-Net framework
    Local feature extraction module
    Spatial position encoding unit
    Spatial normal vector encoding unit
    Semantic feature encoding unit
    Local feature aggregation module
    Dilated residual block
    Scenarios of data collection. (a) Scenes from open pit mines; (b) lidar-equipped mining truck
    Labels for various categories in mining environments
    Semantic segmentation results of mining point clouds. (a1),(b1),(c1) Input point clouds; (a2),(b2),(c2) ground truth;
    Comparison of semantic segmentation details for mining point clouds. (a),(b) Semantic segmentation results of scenario 1 before and after removing spatial position encoding unit; (c),(d) semantic segmentation results of scenario 2 before and after removing spatial position encoding unit; (e),(f) semantic segmentation results of scenario 3 before and after removing spatial normal vector encoding units
    • Table 1. Semantic segmentation results on mining point cloud datasets

      View table

      Table 1. Semantic segmentation results on mining point cloud datasets

      MethodOAmIoUIoU
      NoiseGroundBarricadeHillsideTruck
      PointNet96.2079.61084.5096.7079.5082.5052.60
      PointNet++91.8464.26068.7092.9063.8069.7026.20
      PointCNN96.9275.35087.5997.0982.1086.4423.53
      RandLA-Net97.3085.81891.0097.2686.4889.1265.23
      SCF-Net97.1082.23889.9796.6984.2281.3857.93
      BAF-LAC2397.5086.38091.0697.4787.7689.1566.46
      DLA-Net2498.4086.85491.3297.2486.4589.1370.16
      LFE-Net97.9287.57890.9897.7488.7189.5370.93
    • Table 2. Computational efficiency and parameters on mining point cloud datasets

      View table

      Table 2. Computational efficiency and parameters on mining point cloud datasets

      MethodTotal inference time /sParameters /106mIoU /%
      RandLA-Net344.074.9985.818
      SCF-Net353.6312.1582.238
      BAF-LAC412.4611.6486.380
      DLA-Net367.565.0786.854
      LFE-Net357.997.3587.578
    • Table 3. LFE-Net ablation experiment results

      View table

      Table 3. LFE-Net ablation experiment results

      mIoUIoU
      NoiseGroundBarricadeHillsideTruck
      1) Removing spatial position encoding unit84.84289.6096.2384.3986.6267.37
      2) Removing spatial normal vector encoding unit85.28690.5197.2086.2687.8764.59
      3) Removing semantic feature encoding unit86.49090.9597.5187.9988.4668.54
      4) Removing mixed pooling86.59690.6297.3486.8289.4668.74
      5) LFE-Net87.57890.9897.7488.7189.5370.93
    • Table 4. Normal vector encoding ablation experiment unit:%

      View table

      Table 4. Normal vector encoding ablation experiment unit:%

      Spatial normal vector encodingmIoU
      1) ninij86.604
      2) ni-nij87.578
      3) ninijni-nij85.618
    Tools

    Get Citation

    Copy Citation Text

    Hongxiang Dong, Yi An, Lirong Xie, Zhiyong Yang, Kai Zhang. Semantic Segmentation of Large‑Scale Laser Point Cloud in Mines Based on Local Feature Enhancement[J]. Chinese Journal of Lasers, 2024, 51(17): 1710002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Nov. 22, 2023

    Accepted: Feb. 19, 2024

    Published Online: Aug. 29, 2024

    The Author Email: An Yi (anyi@dlut.edu.cn)

    DOI:10.3788/CJL231425

    CSTR:32183.14.CJL231425

    Topics