Frontiers of Optoelectronics, Volume. 15, Issue 2, 12200(2022)

TCNQ-based organic cocrystal integrated red emission and n-type charge transport

Mengjia Jiang1, Shuyu Li2, Chun Zhen1, Lingsong Wang1, Fei Li1, Yihan Zhang1, Weibing Dong3, Xiaotao Zhang2,3、*, and Wenping Hu1,4
Author Affiliations
  • 1Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
  • 2Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
  • 3Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Qinghai-Tibet Plateau, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
  • 4Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
  • show less
    References(49)

    [1] [1] Dong, H., Fu, X., Liu, J., Wang, Z., Hu, W.: 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25(43), 6158–6183 (2013)

    [2] [2] Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26(9), 1319–1335 (2014)

    [3] [3] Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C.: Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012)

    [4] [4] Lee, S.M., Kwon, J.H., Kwon, S., Choi, K.C.: A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron. Devices 64(5), 1922–1931 (2017)

    [5] [5] Yao, Y., Chen, Y., Wang, H., Samorì, P.: Organic photodetectors based on supramolecular nanostructures. SmartMat. 1(1), e1009 (2020)

    [6] [6] Brus, V.V., Lee, J., Luginbuhl, B.R., Ko, S.J., Bazan, G.C., Nguyen, T.Q.: Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv. Mater. 31(30), e1900904 (2019)

    [7] [7] McCarthy, M.A., Liu, B., Donoghue, E.P., Kravchenko, I., Kim, D.Y., So, F., Rinzler, A.G.: Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570–573 (2011)

    [8] [8] Ding, R., An, M.H., Feng, J., Sun, H.B.: Organic single-crystalline semiconductors for light-emitting applications: recent advances and developments. Laser Photonics Rev. 13(10), 1900009 (2019)

    [9] [9] Lin, J., Hu, Y., Lv, Y., Guo, X., Liu, X.: Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping. Sci. Bull. 62(24), 1637–1638 (2017)

    [10] [10] Chénais, S., Forget, S.: Recent advances in solid-state organic lasers. Polym. Int. 61(3), 390–406 (2012)

    [11] [11] Qin, Z., Gao, H., Dong, H., Hu, W.: Organic light-emitting transistors entering a new development stage. Adv. Mater. 33(31), e2007149 (2021)

    [12] [12] Liu, J., Zhang, H., Dong, H., Meng, L., Jiang, L., Jiang, L., Wang, Y., Yu, J., Sun, Y., Hu, W., Heeger, A.J.: High mobility emissive organic semiconductor. Nat. Commun. 6(1), 10032 (2015)

    [13] [13] Melucci, M., Favaretto, L., Zambianchi, M., Durso, M., Gazzano, M., Zanelli, A., Monari, M., Lobello, M.G., De Angelis, F., Biondo, V., Generali, G., Troisi, S., Koopman, W., Toffanin, S., Capelli, R., Muccini, M.: Molecular tailoring of new thieno(bis) imide-based semiconductors for single layer ambipolar light emitting transistors. Chem. Mater. 25(5), 668–676 (2013)

    [14] [14] Deng, J., Xu, Y., Liu, L., Feng, C., Tang, J., Gao, Y., Wang, Y., Yang, B., Lu, P., Yang, W., Ma, Y.: An ambipolar organic fieldeffect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm2 V-1 s-1. Chem. Commun. 52(12), 2647 (2016)

    [15] [15] Yomogida, Y., Takenobu, T., Shimotani, H., Sawabe, K., Bisri, S.Z., Yamao, T., Hotta, S., Iwasa, Y.: Green light emission from the edges of organic single-crystal transistors. Appl. Phys. Lett. 97(17), 173301 (2010)

    [16] [16] Liu, D., De, J., Gao, H., Ma, S., Ou, Q., Li, S., Qin, Z., Dong, H., Liao, Q., Xu, B., Peng, Q., Shuai, Z., Tian, W., Fu, H., Zhang, X., Zhen, Y., Hu, W.: Organic laser molecule with high mobility, high photoluminescence quantum yield, and deep-blue lasing characteristics. J. Am. Chem. Soc. 142(13), 6332–6339 (2020)

    [17] [17] Kono, T., Kumaki, D., Nishida, J., Sakanoue, T., Kakita, M., Tada, H., Tokito, S., Yamashita, Y.: High-performance and lightemitting n-type organic field-effect transistors based on dithienylbenzothiadiazole and related heterocycles. Chem. Mater. 19(6), 1218–1220 (2007)

    [18] [18] Oh, S., Kim, J.H., Park, S.K., Ryoo, C.H., Park, S.Y.: Fabrication of pixelated organic light-emitting transistor (OLET) with a pure red-emitting organic semiconductor. Adv. Opt. Mater. 7(23), 1901274 (2019)

    [19] [19] Zhu, W., Dong, H., Zhen, Y., Hu, W.: Challenges of organic “cocrystals.” Sci. China Mater. 58(11), 854–859 (2015)

    [20] [20] Huang, Y., Wang, Z., Chen, Z., Zhang, Q.: Organic cocrystals: beyond electrical conductivities and field-effect transistors (FETs). Angew Chem. Int. Ed. 58(29), 9696–9711 (2019)

    [21] [21] Zhang, J., Xu, W., Sheng, P., Zhao, G., Zhu, D.: Organic donor–acceptor complexes as novel organic semiconductors. Acc. Chem. Res. 50(7), 1654–1662 (2017)

    [22] [22] Sun, L., Yang, F., Zhang, X., Hu, W.: Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and perspectives. Mater. Chem. Front. 4(3), 715–728 (2020)

    [23] [23] Sun, L., Wang, Y., Yang, F., Zhang, X., Hu, W.: Cocrystal engineering: a collaborative strategy toward functional materials. Adv. Mater. 31(39), e1902328 (2019)

    [24] [24] Wang, Y., Wu, H., Li, P., Chen, S., Jones, L.O., Mosquera, M.A., Zhang, L., Cai, K., Chen, H., Chen, X.Y., Stern, C.L., Wasielewski, M.R., Ratner, M.A., Schatz, G.C., Stoddart, J.F.: Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nat. Commun. 11(1), 4633 (2020)

    [25] [25] Bhowal, R., Biswas, S., Thumbarathil, A., Koner, A.L., Chopra, D.: Exploring the relationship between intermolecular interactions and solid-state photophysical properties of organic cocrystals. J. Chem. Phys. 123(14), 9311–9322 (2019)

    [26] [26] Black, H.T., Perepichka, D.F.: Crystal engineering of dual channel p/n organic semiconductors by complementary hydrogen bonding. Angew Chem. Int. Ed. 53(8), 2138–2142 (2014)

    [27] [27] Liu, H., Liu, Z., Jiang, W., Fu, H.: Tuning the charge transfer properties by optimized donor–acceptor cocrystal for FET applications: from P type to N type. J. Solid State Chem. 274, 47–51 (2019)

    [28] [28] Liang, Y., Qin, Y., Chen, J., Xing, W., Zou, Y., Sun, Y., Xu, W., Zhu, D.: Band engineering and majority carrier switching in isostructural donor–acceptor complexes DPTTA-FXTCNQ crystals (X = 1, 2, 4). Adv. Sci. 7(3), 1902456–1902464 (2019)

    [29] [29] Park, S.K., Varghese, S., Kim, J.H., Yoon, S.J., Kwon, O.K., An, B.K., Gierschner, J., Park, S.Y.: Tailor-made highly luminescent and ambipolar transporting organic mixed stacked chargetransfer crystals: an isometric donor–acceptor approach. J. Am. Chem. Soc. 135(12), 4757–4764 (2013)

    [30] [30] Park, S.K., Kim, J.H., Ohto, T., Yamada, R., Jones, A.O.F., Whang, D.R., Cho, I., Oh, S., Hong, S.H., Kwon, J.E., Kim, J.H., Olivier, Y., Fischer, R., Resel, R., Gierschner, J., Tada, H., Park, S.Y.: Highly luminescent 2D-type slab crystals based on a molecular charge-transfer complex as promising organic light-emitting transistor materials. Adv. Mater. 29(36), 1701346 (2017)

    [31] [31] Chiang, C.L., Wu, M.T., Dai, D.C., Wen, Y.S., Wang, J.K., Chen, C.T.: Red-emitting fluorenes as efficient emitting hosts for nondoped, organic red-light-emitting diodes. Adv. Funct. Mater. 15(2), 231–238 (2005)

    [32] [32] Sun, L., Zhu, W., Yang, F., Li, B., Ren, X., Zhang, X., Hu, W.: Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Phys. Chem. Chem. Phys. 20(9), 6009–6023 (2018)

    [33] [33] Jiang, L., Gao, J., Wang, E., Li, H., Wang, Z., Hu, W., Jiang, L.: Organic single-crystalline ribbons of a rigid “H”-type anthracene derivative and high-performance, short-channel field-effect transistors of individual micro/nanometer-sized ribbons fabricated by an “organic ribbon mask” technique. Adv. Mater. 20(14), 2735–2740 (2008)

    [34] [34] Wang, W., Luo, L., Sheng, P., Zhang, J., Zhang, Q.: Multifunctional features of organic charge-transfer complexes: advances and perspectives. Chemistry (Weinheim an der Bergstrasse, Germany) 27(2), 464–490 (2021)

    [35] [35] Qin, Y., Cheng, C., Geng, H., Wang, C., Hu, W., Xu, W., Shuai, Z., Zhu, D.: Efficient ambipolar transport properties in alternate stacking donor–acceptor complexes: from experiment to theory. Phys. Chem. Chem. Phys. 18(20), 14094–14103 (2016)

    [36] [36] Croce, G., Arrais, A., Diana, E., Civalleri, B., Viterbo, D., Milanesio, M.: The interpretation of the short range disorder in the fluorene TCNE crystal structure. Int. J. Mol. Sci. 5(3), 93–100 (2004)

    [37] [37] Zhang, J., Geng, H., Virk, T.S., Zhao, Y., Tan, J., Di, C.A., Xu, W., Singh, K., Hu, W., Shuai, Z., Liu, Y., Zhu, D.: Sulfurbridged annulene-TCNQ co-crystal: a self-assembled “molecular level heterojunction” with air stable ambipolar charge transport behavior. Adv. Mater. 24(19), 2603–2607 (2012)

    [38] [38] Usman, R., Khan, A., Sun, H., Wang, M.: Study of charge transfer interaction modes in the mixed donor–acceptor cocrystals of pyrene derivatives and TCNQ: a combined structural, thermal, spectroscopic, and hirshfeld surfaces analysis. J. Solid State Chem. 266, 112–120 (2018)

    [39] [39] Wakahara, T., Nagaoka, K., Nakagawa, A., Hirata, C., Matsushita, Y., Miyazawa, K., Ito, O., Wada, Y., Takagi, M., Ishimoto, T., Tachikawa, M., Tsukagoshi, K.: One-dimensional fullerene/porphyrin cocrystals: near-infrared light sensing through component interactions. ACS Appl. Mater. Interfaces 12(2), 2878–2883 (2020)

    [40] [40] Wang, Y., Zhu, W., Du, W., Liu, X., Zhang, X., Dong, H., Hu, W.: Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. Angew Chem. Int. Ed. 57(15), 3963–3967 (2018)

    [41] [41] Liang, Y., Xing, W., Liu, L., Sun, Y., Xu, W., Zhu, D.: Charge transport behaviors of a novel 2:1 charge transfer complex based on coronene and HAT(CN)6. Org. Electron. 78, 105608 (2020)

    [42] [42] Mandal, A., Swain, P., Nath, B., Sau, S., Mal, P.: Unipolar to ambipolar semiconductivity switching in charge transfer cocrystals of 2,7-di-tertbutylpyrene. CrystEngComm. 21(6), 981–989 (2019)

    [43] [43] Ye, H., Liu, G., Liu, S., Casanova, D., Ye, X., Tao, X., Zhang, Q., Xiong, Q.: Molecular-barrier-enhanced aromatic fluorophores in cocrystals with unity quantum efficiency. Angew Chem. Int. Ed. 57(7), 1928–1932 (2018)

    [44] [44] Dai, X., Zhang, Z., Jin, Y., Niu, Y., Cao, H., Liang, X., Chen, L., Wang, J., Peng, X.: Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014)

    [45] [45] Wu, H., Sun, Y., Sun, L., Wang, L., Zhang, X., Hu, W.: Deep insight into the charge transfer interactions in 1,2,4,5-tetracyanobenzene-phenazine cocrystal. Chin. Chem. Lett. 32(10), 3007–3010 (2021)

    [46] [46] Tsutsumi, J., Matsuoka, S., Inoue, S., Minemawari, H., Yamada, T., Hasegawa, T.: N-type field-effect transistors based on layered crystalline donor–acceptor semiconductors with dialkylated benzothienobenzothiophenes as electron donors. J. Mater. Chem. C Mater. Opt. Electron. Dev. 3(9), 1976–1981 (2015)

    [47] [47] Geng, H., Zhu, L., Yi, Y., Zhu, D., Shuai, Z.: Superexchange induced charge transport in organic donor–acceptor cocrystals and copolymers: a theoretical perspective. Chem. Mater. 31(17), 6424–6434 (2019)

    [48] [48] Geng, H., Zheng, X., Shuai, Z., Zhu, L., Yi, Y.: Understanding the charge transport and polarities in organic donor–acceptor mixed-stack crystals: molecular insights from the superexchange couplings. Adv. Mater. 27(8), 1443–1449 (2015)

    [49] [49] Zhu, L., Geng, H., Yi, Y., Wei, Z.: Charge transport in organic donor–acceptor mixed-stack crystals: the role of nonlocal electron–phonon couplings. Phys. Chem. Chem. Phys. 19(6), 4418–4425 (2017)

    Tools

    Get Citation

    Copy Citation Text

    Mengjia Jiang, Shuyu Li, Chun Zhen, Lingsong Wang, Fei Li, Yihan Zhang, Weibing Dong, Xiaotao Zhang, Wenping Hu. TCNQ-based organic cocrystal integrated red emission and n-type charge transport[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Dec. 14, 2021

    Accepted: Jan. 13, 2022

    Published Online: Jan. 18, 2023

    The Author Email: Xiaotao Zhang (zhangxt@tju.edu.cn)

    DOI:10.1007/s12200-022-00022-7

    Topics