Laser & Optoelectronics Progress, Volume. 56, Issue 5, 051002(2019)
Object Detectionin of Remote Sensing Images Based on Convolutional Neural Networks
[2] Shao W, Yang W, Liu G et al. Car detection from high-resolution aerial imagery using multiple features. [C]∥IEEE International Geoscience and Remote Sensing Symposium, 4379-4382(2012).
[6] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, 580-587(2014).
[8] Jaderberg M, Simonyan K, Zisserman A et al. -02-04)[2018-07-25]. https:∥arxiv., org/abs/1506, 02025(2016).
[9] Girshick R. Fast R-CNN. [C]∥IEEE International Conference on Computer Vision (ICCV), 1440-1448(2015).
[11] Simonyan K. -04-10)[2018-07-25]. https:∥arxiv., org/abs/1409, 1556(2015).
[12] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 770-778(2016).
[13] Zhu H G, Chen X G, Dai W Q et al. Orientation robust object detection in aerial images using deep convolutional neural network. [C]∥IEEE International Conference on Image Processing (ICIP), 3735-3739(2015).
Get Citation
Copy Citation Text
Pan Ou, Zheng Zhang, Kui Lu, Zeyang Liu. Object Detectionin of Remote Sensing Images Based on Convolutional Neural Networks[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051002
Category: Image Processing
Received: Aug. 6, 2018
Accepted: Sep. 21, 2018
Published Online: Jul. 31, 2019
The Author Email: Zhang Zheng (seirios@buaa.edu.cn)