Laser & Optoelectronics Progress, Volume. 57, Issue 8, 081505(2020)

Optical Cable Pitch Detection Method Based on Machine Vision

Zhipeng Wu1, Danping Huang1、*, Kang Guo2, Jianping Tian1, Licheng Wu3, and Shaodong Yu1
Author Affiliations
  • 1College of Mechanical Engineering, Sichuan University of Science & Engineering, Yibin, Sichuan 644000, China;
  • 2Caihong (Hefei) LCD Glass Co., Ltd., Hefei, Anhui 230000, China
  • 3Hebei Economy Management School, Shijiazhuang, Hebei 0 50000, China
  • show less
    Figures & Tables(19)
    Diagram of system structure
    Optical cable visual information. (a) Class I; (b) class II
    Commutation point and cable pitch
    Influence of different types of visual information. (a) Influence of class I sample cable point and cable ties; (b) influence of class II sample cable ties
    Binarization results of original images. (a) Class I; (b) class II
    Pretreatment process of class Ⅰ cable. (a) Original image; (b) thresholding; (c) denoising; (d) fitting
    Pretreatment process of class Ⅱ cable. (a) Original image; (b) filtering; (c) grayscale stretching; (d) fitting
    Results of matching. (a) Success for matching; (b) failure for matching
    Template area division for different types of commutation points. (a) Model1; (b) model2; (c) model3
    Flow chart of automatically constructing template
    Best template
    Physical image of detection system
    Cable pretreatment results. (a) Class I; (b) class II
    Matching results of template partition precise positioning method
    Numerical results of different matching methods and different types of pitch errors. Direct template matching for (a) class I and (c) class II; template partition precise positioning method for (b) class I and (d) class II
    • Table 1. Relationship between mean value of the template and matching error rate at different node gray level

      View table

      Table 1. Relationship between mean value of the template and matching error rate at different node gray level

      Cable point gray
      116.05111.9497.86
      Errorrate /%AveragegrayErrorrate /%AveragegrayErrorrate /%Averagegray
      17.516718.019420.0171
      15.017715.520216.0188
      10.018711.021011.0205
      5.51973.02184.5213
      9.014.016.02072172277.013.019.022623424310.014.018.0225236250
    • Table 2. Relationship between v' of optimal filtering structural elements matrix and mean values of node gray level

      View table

      Table 2. Relationship between v' of optimal filtering structural elements matrix and mean values of node gray level

      Error rate/%00100
      Matrix100×20120×24150×30200×40220×44
      Cable pointgray116.05111.94106.3397.8690.36
    • Table 3. Comparison of common template matching and template partition precise positioning method

      View table

      Table 3. Comparison of common template matching and template partition precise positioning method

      MethodCablepitch /pixelVariance /pixelErrorrate /%
      Original6887015.0
      Precise positioning71130
    • Table 4. Average pitch and error results measured by two types of optical cables

      View table

      Table 4. Average pitch and error results measured by two types of optical cables

      ClassLength /mCable pitch /pixelVariance /pixel
      I10006944
      II10007113
    Tools

    Get Citation

    Copy Citation Text

    Zhipeng Wu, Danping Huang, Kang Guo, Jianping Tian, Licheng Wu, Shaodong Yu. Optical Cable Pitch Detection Method Based on Machine Vision[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081505

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 16, 2019

    Accepted: Sep. 24, 2019

    Published Online: Apr. 3, 2020

    The Author Email: Danping Huang (hdpyx2002@163.com)

    DOI:10.3788/LOP57.081505

    Topics