Opto-Electronic Advances, Volume. 8, Issue 4, 240207-1(2025)

Light-induced enhancement of exciton transport in organic molecular crystal

Xiao-Ze Li1、†, Shuting Dai2、†, Hong-Hua Fang1、*, Yiwen Ren3, Yong Yuan1, Jiawen Liu2, Chenchen Zhang2, Pu Wang4,5, Fangxu Yang3, Wenjing Tian2, Bin Xu2、**, and Hong-Bo Sun1、***
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 China
  • 3Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
  • 4Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 5School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(52)

    [1] SM Menke, WA Luhman, RJ Holmes. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency. Nat Mater, 12, 152-157(2013).

    [2] H Lu, K Chen, RS Bobba et al. Simultaneously enhancing exciton/charge transport in organic solar cells by an organoboron additive. Adv Mater, 34, 2205926(2022).

    [3] AJ Sneyd, T Fukui, D Paleček et al. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci Adv, 7, eabh4232(2021).

    [4] AM Alvertis, JB Haber, EA Engel et al. Phonon-induced localization of excitons in molecular crystals from first principles. Phys Rev Lett, 130, 086401(2023).

    [5] OV Mikhnenko, PWM Blom, TQ Nguyen. Exciton diffusion in organic semiconductors. Energy Environ Sci, 8, 1867-1888(2015).

    [6] SM Menke, RJ Holmes. Exciton diffusion in organic photovoltaic cells. Energy Environ Sci, 7, 499-512(2014).

    [7] OV Mikhnenko, M Kuik, J Lin et al. Trap-limited exciton diffusion in organic semiconductors. Adv Mater, 26, 1912-1917(2014).

    [8] GJ Hedley, AJ Ward, A Alekseev et al. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nat Commun, 4, 2867(2013).

    [9] PE Shaw, A Ruseckas, IDW Samuel. Exciton diffusion measurements in poly(3-hexylthiophene). Adv Mater, 20, 3516-3520(2008).

    [10] DE Markov, C Tanase, PWM Blom et al. Simultaneous enhancement of charge transport and exciton diffusion in poly (p-phenylene vinylene) derivatives. Phys Rev B, 72, 045217(2005).

    [11] AJ Lewis, A Ruseckas, OPM Gaudin et al. Singlet exciton diffusion in MEH-PPV films studied by exciton–exciton annihilation. Org Electron, 7, 452-456(2006).

    [12] M Balasubrahmaniyam, A Simkhovich, A Golombek et al. From enhanced diffusion to ultrafast ballistic motion of hybrid light–matter excitations. Nat Mater, 22, 338-344(2023).

    [13] B Liu, XJ Huang, SC Hou et al. Photocurrent generation following long-range propagation of organic exciton–polaritons. Optica, 9, 1029-1036(2022).

    [14] RH Tichauer, I Sokolovskii, G Groenhof. Tuning the coherent propagation of organic exciton-polaritons through the cavity Q-factor. Adv Sci, 10, 2302650(2023).

    [15] AT Haedler, K Kreger, A Issac et al. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature, 523, 196-199(2015).

    [16] B Wittmann, FA Wenzel, S Wiesneth et al. Enhancing long-range energy transport in supramolecular architectures by tailoring coherence properties. J Am Chem Soc, 142, 8323-8330(2020).

    [17] XH Jin, MB Price, JR Finnegan et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science, 360, 897-900(2018).

    [18] Y Wan, A Stradomska, J Knoester et al. Direct imaging of exciton transport in tubular porphyrin aggregates by ultrafast microscopy. J Am Chem Soc, 139, 7287-7293(2017).

    [19] JR Caram, S Doria, DM Eisele et al. Room-temperature micron-scale exciton migration in a stabilized emissive molecular aggregate. Nano Lett, 16, 6808-6815(2016).

    [20] GM Akselrod, PB Deotare, NJ Thompson et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat Commun, 5, 3646(2014).

    [21] H Najafov, B Lee, Q Zhou et al. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat Mater, 9, 938-943(2010).

    [22] Y Wan, Z Guo, T Zhu et al. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat Chem, 7, 785-792(2015).

    [23] JD Ziegler, J Zipfel, B Meisinger et al. Fast and anomalous exciton diffusion in two-dimensional hybrid perovskites. Nano Lett, 20, 6674-6681(2020).

    [24] X Xiao, M Wu, ZY Ni et al. Ultrafast exciton transport with a long diffusion length in layered perovskites with organic cation functionalization. Adv Mater, 32, 2004080(2020).

    [25] K Wagner, J Zipfel, R Rosati et al. Nonclassical exciton diffusion in monolayer WSe2. Phys Rev Lett, 127, 076801(2021).

    [26] KA Mazzio, CK Luscombe. The future of organic photovoltaics. Chem Soc Rev, 44, 78-90(2015).

    [27] DX Ding, ZC Wang, CB Duan et al. White fluorescent organic light-emitting diodes with 100% power conversion. Research, 2022, 0009(2022).

    [28] CB Duan, CM Han, J Zhang et al. Manipulating charge-transfer excitons by exciplex matrix: toward thermally activated delayed fluorescence diodes with power efficiency beyond 110 lm W−1. Adv Funct Mater, 31, 2102739(2021).

    [29] PCY Chow, T Someya. Organic photodetectors for next‐generation wearable electronics. Adv Mater, 32, 1902045(2020).

    [30] K Liu, B Ouyang, XL Guo et al. Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex Electron, 6, 1(2022).

    [31] ST Dai, XZ Li, JW Liu et al. Conformation‐confined organic butterfly‐molecule with high photoluminescence efficiency, deep‐blue amplified spontaneous emission, and unique piezochromic luminescence. Angew Chem Int Ed, 64, e202414960(2025).

    [32] HP Liu, ZQ Lu, ZL Zhang et al. Highly elastic organic crystals for flexible optical waveguides. Angew Chem Int Ed Engl, 57, 8448-8452(2018).

    [33] E Penzo, A Loiudice, ES Barnard et al. Long-range exciton diffusion in two-dimensional assemblies of cesium lead bromide perovskite nanocrystals. ACS Nano, 14, 6999-7007(2020).

    [34] ZF Shi, YZ Ni, JS Huang. Direct observation of fast carriers transport along out-of-plane direction in a Dion–Jacobson layered perovskite. ACS Energy Lett, 7, 984-987(2022).

    [35] XZ Li, N Aihemaiti, HH Fang et al. Optical visualization of photoexcitation diffusion in all-inorganic perovskite at high temperature. J Phys Chem Lett, 13, 7645-7652(2022).

    [36] ZD Li, XB Lu, Leon DF Cordovilla et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 15, 1539-1547(2021).

    [37] F Tagarelli, E Lopriore, D Erkensten et al. Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nat Photonics, 17, 615-621(2023).

    [38] Z Sun, A Ciarrocchi, F Tagarelli et al. Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. Nat Photonics, 16, 79-85(2022).

    [39] DW deQuilettes, R Brenes, M Laitz et al. Impact of photon recycling, grain boundaries, and nonlinear recombination on energy transport in semiconductors. ACS Photonics, 9, 110-122(2022).

    [40] B An, Z Li, Z Wang et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat Mater, 21, 932-938(2022).

    [41] H Wang, DY Yong, SC Chen et al. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J Am Chem Soc, 140, 1760-1766(2018).

    [42] WR Mateker, MD McGehee. Progress in understanding degradation mechanisms and improving stability in organic photovoltaics. Adv Mater, 29, 1603940(2017).

    [43] D He, M Zeng, ZZ Zhang et al. Exciton diffusion and dissociation in organic and quantum-dot solar cells. SmartMat, 4, e1176(2023).

    [44] MT Sajjad, A Ruseckas, IDW Samuel. Enhancing exciton diffusion length provides new opportunities for organic photovoltaics. Matter, 3, 341-354(2020).

    [45] AJ Sneyd, D Beljonne, A Rao. A new frontier in exciton transport: transient delocalization. J Phys Chem Lett, 13, 6820-6830(2022).

    [46] T Lu, QX Chen. Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions. Chem–Methods, 1, 231-239(2021).

    [47] PR Spackman, MJ Turner, JJ McKinnon et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr, 54, 1006-1011(2021).

    [48] C Janiak. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc, Dalton Trans, 3885-3896(2000).

    [49] MA Spackman. Molecules in crystals. Phys Scr, 87, 048103(2013).

    [50] F Dubin, R Melet, T Barisien et al. Macroscopic coherence of a single exciton state in an organic quantum wire. Nat Phys, 2, 32-35(2006).

    [51] GS Engel, TR Calhoun, EL Read et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 446, 782-786(2007).

    [52] JS Cao, RJ Cogdell, DF Coker et al. Quantum biology revisited. Sci Adv, 6, eaaz4888(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun. Light-induced enhancement of exciton transport in organic molecular crystal[J]. Opto-Electronic Advances, 2025, 8(4): 240207-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 7, 2024

    Accepted: Jan. 20, 2025

    Published Online: Jul. 14, 2025

    The Author Email: Hong-Hua Fang (HHFang), Bin Xu (BXu), Hong-Bo Sun (HBSun)

    DOI:10.29026/oea.2025.240207

    Topics