Chinese Journal of Lasers, Volume. 41, Issue 5, 502003(2014)
Low Noise Continuous-Wave Single Frequency 780 nm Laser High-Efficiently Generated by Extra-Cavity-Enhanced Frequency Doubling
[1] [1] J X Feng, X T Tian, Y M Li, et al.. Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3[J]. Appl Phys Lett, 2008, 92(22): 221102.
[2] [2] M Mehmet, S Ast, T Eberle, et al.. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB[J]. Opt Lett, 2011, 19(25): 25763-25772.
[3] [3] T Eberle, V Hndchen, J Duhme, et al.. Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source[J]. Phys Rev A, 2011, 83(5): 052329.
[4] [4] M D Eisaman, A Andre, F Massou, et al.. Electromagnetically-induced transparency with tunable single-photon pulse[J]. Nature, 2005, 438(7069): 837-841.
[5] [5] H de Riedmatten, M Afzelius, M U Staudt, et al.. A solid-state light-matter interface at the single photon level[J]. Nature, 2008, 456(7223): 773-777.
[6] [6] Rikizo Ikuta, Yoshiaki Kusaka, Tsuyoshi Kitano, et al.. Wide-band quantum interface for visible-to-telecommunication wavelength conversion[J]. Nature Communications, 2011, 2(11): 537.
[7] [7] F Lienhart, S Boussen, O Carraz, et al.. Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm[J]. Appl Phys B, 2007, 89(2-3): 177-180.
[8] [8] Y Ovchinnikov, G Marra. Accurate rubidium atomic fountain frequency standard[J]. Metrologia, 2011, 48(11): 87-100.
[9] [9] Nicolas J Cerf, Philippe Grangier. From quantum cloning to quantum key distribution with continuous variables: a review (Invited)[J]. J Opt Soc Am B, 2007, 24(2): 324-334.
[10] [10] Jinxia Feng, Yongmin Li, Xiutao Tian, et al.. Noise suppression, linewidth narrowing of a master oscillator power amplifier at 1.56 μm and the second harmonic generation output at 780 nm[J]. Opt Express, 2008, 16(16): 11871-11877.
[11] [11] S Chaitanya Kumar, G K Samanta, M Ebrahim-Zadeh. High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT[J]. Opt Express, 2009, 17(16): 13711-13726.
[13] [13] Stefan Ast, Ramon Moghadas Nia, Axel Schnbeck, et al.. High-efficiency frequency doubling of continuous-wave laser light[J]. Opt Lett, 2011, 36(17): 3467-3469.
[14] [14] G D Boyd, D A Kleinman. Parametric interaction of focused gaussian light beams[J]. J Appl Phys, 1968, 39(8): 3597-3639.
[15] [15] A Ashkin, G D Byod, J M Dziedzic. Resonant optical second harmonic generation and mixing[J]. IEEE J Quant Electron, 1966, 2(6): 109-124.
[16] [16] E D Black. An introduction to Pound-Drever-Hall laser frequency stabilization[J]. Am J Phys, 2001, 69(1): 79-87.
Get Citation
Copy Citation Text
Li Hong, Feng Jinxia, Wan Zhenju, Zhang Kuanshou. Low Noise Continuous-Wave Single Frequency 780 nm Laser High-Efficiently Generated by Extra-Cavity-Enhanced Frequency Doubling[J]. Chinese Journal of Lasers, 2014, 41(5): 502003
Category: Laser physics
Received: Oct. 20, 2013
Accepted: --
Published Online: May. 6, 2014
The Author Email: Li Hong (lihong201122607009@163.com)