Optical Technique, Volume. 47, Issue 2, 209(2021)

PET image denoising based on residual U-Net neural network and DIP

HUANG Xing1、* and YANG Ruimei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(15)

    [2] [2] Bland J, Belzunce M A, Ellis S, et al. Spatially compact MR-guided kernel EM for PET image reconstruction[J]. IEEE Transactions on Radiation and Plasma Medical Ences,2018,2(5):470—482.

    [5] [5] Hashimoto F, Ohba H, Ote K, et al. Denoising of dynamic sinogram by image guided filtering for positron emission tomography[J]. IEEE Transactions on Radiation and Plasma Medical Ences,2018,2(6):541—548.

    [6] [6] Ellis S, Mallia A, Mcginnity C J, et al. Multitracer guided PET image reconstruction[J]. IEEE Transactions on Radiation & Plasma Medical Sciences,2018,2(5):499—509.

    [9] [9] Wang G. High Temporal-resolution dynamic PET Image reconstruction using a new spatiotemporal kernel method[J]. IEEE Transactions on Medical Imaging,2019,38(3):664—674.

    [11] [11] Gong K, Cheng-Liao J, Wang G, et al. Direct patlak reconstruction from dynamic PET data using the kernel method with MRI information based on structural similarity[J]. IEEE Transactions on Medical Imaging,2018,37(4):955—965.

    [13] [13] Zeng G L. Maximum-Likelihood Expectation-maximization algorithm vs. windowed filtered backprojection algorithm: A case study[J]. Journal of Nuclear Medicine Technology,2018,46(2):129—132.

    [14] [14] Yansong Z, Jha A K, Wong D F, et al. Image reconstruction in fluorescence molecular tomography with sparsity-initialized maximum-likelihood expectation maximization[J]. Biomedical Optics Express,2018,9(7):3106—3115.

    [16] [16] Grubea S, Petosi A, Suhanek M, et al. Zatita od buke-zvune barijere Noise reduction-noise barriers[J]. Sigurnost,2019,61(3):217—226.

    [17] [17] Wang Y, Wang G, Chen C, et al. Multi-scale dilated convolution of convolutional neural network for image denoising[J]. Multimedia Tools and Applications,2019,78(14):19945—19960.

    [18] [18] Han X, Liu Y, Yang H, et al. Normalization of face illumination with photorealistic texture via deep image prior synthesis[J]. Neurocomputing,2020,5(09):965—976.

    [19] [19] Jifara W, Jiang F, Rho S, et al. Medical image denoising using convolutional neural network: a residual learning approach[J]. Journal of Supercomputing,2019,75(2):704—718.

    [21] [21] Bland J, Mehranian A, Belzunce M A, et al. MR-Guided kernel EM reconstruction for reduced dose PET imaging[J]. IEEE Transactions on Radiation & Plasma Medical Ences,2018,2(3):235—243.

    [23] [23] Klyuzhin I S, Cheng J C, Bevington C, et al. Use of a Tracer-specific deep artificial neural net to denoise dynamic PET images[J]. IEEE Transactions on Medical Imaging,2020,39(2):366—376.

    [24] [24] Islam M R, Xu C, Raza R A, et al. An effective weighted hybrid regularizing approach for image noise reduction[J]. Circuits, Systems, and Signal Processing,2019,38(1):218—241.

    [25] [25] https:∥brainweb.bic.mni.mcgill.ca/brainweb/

    CLP Journals

    [1] ZHANG Wei, GONG Qu, ZHANG Junjie, WANG Shenghuai. Fringe pattern denoising analysis based on improved U-net[J]. Optical Technique, 2022, 48(3): 334

    Tools

    Get Citation

    Copy Citation Text

    HUANG Xing, YANG Ruimei. PET image denoising based on residual U-Net neural network and DIP[J]. Optical Technique, 2021, 47(2): 209

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 28, 2020

    Accepted: --

    Published Online: Sep. 9, 2021

    The Author Email: Xing HUANG (cosmosavon@163.com)

    DOI:

    CSTR:32186.14.

    Topics